Create a new {@link Matrix4d} and make it a copy of the given matrix.
Create a new {@link Matrix4d} and set its upper 4x3 submatrix to the given matrix <code>mat</code> and all other elements to identity.
Create a new {@link Matrix4d} by setting its uppper left 3x3 submatrix to the values of the given {@link Matrix3d} and the rest to identity.
Create a new 4x4 matrix using the supplied double values. <p> The matrix layout will be:<br><br> m00, m10, m20, m30<br> m01, m11, m21, m31<br> m02, m12, m22, m32<br> m03, m13, m23, m33
Create a new {@link Matrix4d} and initialize its four columns using the supplied vectors.
Set the value of the matrix element at column 0 and row 0 without updating the properties of the matrix.
Set the value of the matrix element at column 0 and row 1 without updating the properties of the matrix.
Set the value of the matrix element at column 0 and row 2 without updating the properties of the matrix.
Set the value of the matrix element at column 0 and row 3 without updating the properties of the matrix.
Set the value of the matrix element at column 1 and row 0 without updating the properties of the matrix.
Set the value of the matrix element at column 1 and row 1 without updating the properties of the matrix.
Set the value of the matrix element at column 1 and row 2 without updating the properties of the matrix.
Set the value of the matrix element at column 1 and row 3 without updating the properties of the matrix.
Set the value of the matrix element at column 2 and row 0 without updating the properties of the matrix.
Set the value of the matrix element at column 2 and row 1 without updating the properties of the matrix.
Set the value of the matrix element at column 2 and row 2 without updating the properties of the matrix.
Set the value of the matrix element at column 2 and row 3 without updating the properties of the matrix.
Set the value of the matrix element at column 3 and row 0 without updating the properties of the matrix.
Set the value of the matrix element at column 3 and row 1 without updating the properties of the matrix.
Set the value of the matrix element at column 3 and row 2 without updating the properties of the matrix.
Set the value of the matrix element at column 3 and row 3 without updating the properties of the matrix.
Component-wise add <code>this</code> and <code>other</code>.
Component-wise add the upper 4x3 submatrices of <code>this</code> and <code>other</code>.
Compute the extents of the coordinate system before this {@link #isAffine() affine} transformation was applied and store the resulting corner coordinates in <code>corner</code> and the span vectors in <code>xDir</code>, <code>yDir</code> and <code>zDir</code>. <p> That means, given the maximum extents of the coordinate system between <code>[-1..+1]</code> in all dimensions, this method returns one corner and the length and direction of the three base axis vectors in the coordinate system before this transformation is applied, which transforms into the corner coordinates <code>[-1, +1]</code>. <p> This method is equivalent to computing at least three adjacent corners using {@link #frustumCorner(int, Vector3d)} and subtracting them to obtain the length and direction of the span vectors.
Apply an arcball view transformation to this matrix with the given <code>radius</code> and center <code>(centerX, centerY, centerZ)</code> position of the arcball and the specified X and Y rotation angles. <p> This method is equivalent to calling: <code>translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)</code>
Apply an arcball view transformation to this matrix with the given <code>radius</code> and <code>center</code> position of the arcball and the specified X and Y rotation angles. <p> This method is equivalent to calling: <code>translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)</code>
Assume the given properties about this matrix. <p> Use one or multiple of 0, {@link Matrix4d#PROPERTY_IDENTITY}, {@link Matrix4d#PROPERTY_TRANSLATION}, {@link Matrix4d#PROPERTY_AFFINE}, {@link Matrix4d#PROPERTY_PERSPECTIVE}, {@link Matrix4fc#PROPERTY_ORTHONORMAL}.
Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position <code>objPos</code> towards a target position at <code>targetPos</code> while constraining a cylindrical rotation around the given <code>up</code> vector. <p> This method can be used to create the complete model transformation for a given object, including the translation of the object to its position <code>objPos</code>.
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position <code>objPos</code> towards a target position at <code>targetPos</code>. <p> This method can be used to create the complete model transformation for a given object, including the translation of the object to its position <code>objPos</code>. <p> If preserving an <i>up</i> vector is not necessary when rotating the +Z axis, then a shortest arc rotation can be obtained using {@link #billboardSpherical(ref Vector3d, Vector3d)}.
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position <code>objPos</code> towards a target position at <code>targetPos</code> using a shortest arc rotation by not preserving any <i>up</i> vector of the object. <p> This method can be used to create the complete model transformation for a given object, including the translation of the object to its position <code>objPos</code>. <p> In order to specify an <i>up</i> vector which needs to be maintained when rotating the +Z axis of the object, use {@link #billboardSpherical(ref Vector3d, Vector3d, Vector3d)}.
Compute the cofactor matrix of the upper left 3x3 submatrix of <code>this</code>. <p> The cofactor matrix can be used instead of {@link #normal()} to transform normals when the orientation of the normals with respect to the surface should be preserved.
Compute the cofactor matrix of the upper left 3x3 submatrix of <code>this</code> and store it into <code>dest</code>. <p> The cofactor matrix can be used instead of {@link #normal(Matrix3d)} to transform normals when the orientation of the normals with respect to the surface should be preserved.
Compute the cofactor matrix of the upper left 3x3 submatrix of <code>this</code> and store it into <code>dest</code>. All other values of <code>dest</code> will be set to {@link #identity() identity}. <p> The cofactor matrix can be used instead of {@link #normal(Matrix4d)} to transform normals when the orientation of the normals with respect to the surface should be preserved.
Compute and set the matrix properties returned by {@link #properties()} based on the current matrix element values.
Component-wise add the upper 4x3 submatrices of <code>this</code> and <code>other</code> by first multiplying each component of <code>other</code>'s 4x3 submatrix by <code>otherFactor</code> and adding that result to <code>this</code>. <p> The matrix <code>other</code> will not be changed.
Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>F</code> the frustum matrix, then the new matrix will be <code>M * F</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * F * v</code>, the frustum transformation will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setFrustum(double, double, double, double, double, double, bool) setFrustum()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>F</code> the frustum matrix, then the new matrix will be <code>M * F</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * F * v</code>, the frustum transformation will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setFrustum(double, double, double, double, double, double) setFrustum()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>F</code> the frustum matrix, then the new matrix will be <code>M * F</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * F * v</code>, the frustum transformation will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setFrustum(double, double, double, double, double, double, bool) setFrustum()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>F</code> the frustum matrix, then the new matrix will be <code>M * F</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * F * v</code>, the frustum transformation will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setFrustum(double, double, double, double, double, double) setFrustum()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Compute the axis-aligned bounding box of the frustum described by <code>this</code> matrix and store the minimum corner coordinates in the given <code>min</code> and the maximum corner coordinates in the given <code>max</code> vector. <p> The matrix <code>this</code> is assumed to be the {@link #invert() inverse} of the origial view-projection matrix for which to compute the axis-aligned bounding box in world-space. <p> The axis-aligned bounding box of the unit frustum is <code>(-1, -1, -1)</code>, <code>(1, 1, 1)</code>.
Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>F</code> the frustum matrix, then the new matrix will be <code>M * F</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * F * v</code>, the frustum transformation will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setFrustumLH(double, double, double, double, double, double, bool) setFrustumLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>F</code> the frustum matrix, then the new matrix will be <code>M * F</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * F * v</code>, the frustum transformation will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setFrustumLH(double, double, double, double, double, double, bool) setFrustumLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>F</code> the frustum matrix, then the new matrix will be <code>M * F</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * F * v</code>, the frustum transformation will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setFrustumLH(double, double, double, double, double, double) setFrustumLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>F</code> the frustum matrix, then the new matrix will be <code>M * F</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * F * v</code>, the frustum transformation will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setFrustumLH(double, double, double, double, double, double) setFrustumLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Reset this matrix to the identity. <p> Please note that if a call to {@link #identity()} is immediately followed by a call to: {@link #translate(double, double, double) translate}, {@link #rotate(double, double, double, double) rotate}, {@link #scale(double, double, double) scale}, {@link #perspective(double, double, double, double) perspective}, {@link #frustum(double, double, double, double, double, double) frustum}, {@link #ortho(double, double, double, double, double, double) ortho}, {@link #ortho2D(double, double, double, double) ortho2D}, {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt}, {@link #lookAlong(double, double, double, double, double, double) lookAlong}, or any of their overloads, then the call to {@link #identity()} can be omitted and the subsequent call replaced with: {@link #translation(double, double, double) translation}, {@link #rotation(double, double, double, double) rotation}, {@link #scaling(double, double, double) scaling}, {@link #setPerspective(double, double, double, double) setPerspective}, {@link #setFrustum(double, double, double, double, double, double) setFrustum}, {@link #setOrtho(double, double, double, double, double, double) setOrtho}, {@link #setOrtho2D(double, double, double, double) setOrtho2D}, {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt}, {@link #setLookAlong(double, double, double, double, double, double) setLookAlong}, or any of their overloads.
Invert this matrix. <p> If <code>this</code> matrix represents an {@link #isAffine() affine} transformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to <code>(0, 0, 0, 1)</code>, then {@link #invertAffine()} can be used instead of this method.
Invert this matrix by assuming that it is an {@link #isAffine() affine} transformation (i.e. its last row is equal to <code>(0, 0, 0, 1)</code>).
If <code>this</code> is an arbitrary perspective projection matrix obtained via one of the {@link #frustum(double, double, double, double, double, double) frustum()} methods or via {@link #setFrustum(double, double, double, double, double, double) setFrustum()}, then this method builds the inverse of <code>this</code>. <p> This method can be used to quickly obtain the inverse of a perspective projection matrix. <p> If this matrix represents a symmetric perspective frustum transformation, as obtained via {@link #perspective(double, double, double, double) perspective()}, then {@link #invertPerspective()} should be used instead.
Invert <code>this</code> orthographic projection matrix. <p> This method can be used to quickly obtain the inverse of an orthographic projection matrix.
If <code>this</code> is a perspective projection matrix obtained via one of the {@link #perspective(double, double, double, double) perspective()} methods or via {@link #setPerspective(double, double, double, double) setPerspective()}, that is, if <code>this</code> is a symmetrical perspective frustum transformation, then this method builds the inverse of <code>this</code>. <p> This method can be used to quickly obtain the inverse of a perspective projection matrix when being obtained via {@link #perspective(double, double, double, double) perspective()}.
Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code> and store the result in <code>this</code>. <p> If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code> then the result is <code>other</code>.
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> This is equivalent to calling {@link #lookAt(ref Vector3d, Vector3d, Vector3d) lookAt} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(ref Vector3d, Vector3d) setLookAlong()}.
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> This is equivalent to calling {@link #lookAt(ref Vector3d, Vector3d, Vector3d) lookAt} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(ref Vector3d, Vector3d) setLookAlong()}.
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> This is equivalent to calling {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt()} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(double, double, double, double, double, double) setLookAlong()}
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> This is equivalent to calling {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt()} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(double, double, double, double, double, double) setLookAlong()}
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAt(ref Vector3d, Vector3d, Vector3d)}.
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAt(ref Vector3d, Vector3d, Vector3d)}.
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()}.
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()}.
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAtLH(ref Vector3d, Vector3d, Vector3d)}.
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAtLH(ref Vector3d, Vector3d, Vector3d)}.
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()}.
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()}.
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code> and store the result in <code>dest</code>. <p> This method assumes <code>this</code> to be a perspective transformation, obtained via {@link #frustum(double, double, double, double, double, double) frustum()} or {@link #perspective(double, double, double, double) perspective()} or one of their overloads. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()}.
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code> and store the result in <code>dest</code>. <p> This method assumes <code>this</code> to be a perspective transformation, obtained via {@link #frustumLH(double, double, double, double, double, double) frustumLH()} or {@link #perspectiveLH(double, double, double, double) perspectiveLH()} or one of their overloads. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()}.
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 1 0 0 0 0 0 -1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 1 0 0 0 0 1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 1 0 0 0 0 0 -1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 1 0 0 0 0 -1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 1 0 0 0 0 -1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 0 -1 0 1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 0 1 0 0 1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 0 -1 0 1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 0 -1 0 0 1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 0 -1 0 0 1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 -1 0 0 0 0 0 1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 -1 0 0 0 0 0 -1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 -1 0 0 0 0 1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 -1 0 0 0 0 1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 -1 0 0 0 0 0 1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 -1 0 0 0 0 0 -1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 -1 0 0 0 0 -1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 -1 0 0 0 0 -1 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 0 1 0 -1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 0 -1 0 -1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 0 1 0 0 -1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 0 1 0 0 -1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 0 1 0 -1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 0 -1 0 -1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 0 -1 0 0 -1 0 0 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 0 -1 0 0 -1 0 0 0 0 0 0 1 </pre>
Multiply this matrix by the supplied <code>right</code> matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the transformation of the right matrix will be applied first!
Multiply this matrix by the supplied <code>right</code> matrix and store the result in <code>this</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the transformation of the right matrix will be applied first!
Multiply this matrix by the matrix with the supplied elements. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix whose elements are supplied via the parameters, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the transformation of the right matrix will be applied first!
Multiply this matrix by the supplied <code>right</code> matrix. <p> The last row of the <code>right</code> matrix is assumed to be <code>(0, 0, 0, 1)</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the transformation of the right matrix will be applied first!
Multiply this matrix by the supplied <code>right</code> matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the transformation of the right matrix will be applied first! <p> This method neither assumes nor checks for any matrix properties of <code>this</code> or <code>right</code> and will always perform a complete 4x4 matrix multiplication. This method should only be used whenever the multiplied matrices do not have any properties for which there are optimized multiplication methods available.
Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix whose elements are supplied via the parameters, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the transformation of the right matrix will be applied first!
Component-wise multiply the upper 4x3 submatrices of <code>this</code> by <code>other</code>.
Multiply this matrix by the supplied <code>right</code> matrix, both of which are assumed to be {@link #isAffine() affine}, and store the result in <code>this</code>. <p> This method assumes that <code>this</code> matrix and the given <code>right</code> matrix both represent an {@link #isAffine() affine} transformation (i.e. their last rows are equal to <code>(0, 0, 0, 1)</code>) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination). <p> This method will not modify either the last row of <code>this</code> or the last row of <code>right</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the transformation of the right matrix will be applied first!
Multiply this matrix by the supplied <code>right</code> matrix, which is assumed to be {@link #isAffine() affine}, and store the result in <code>this</code>. <p> This method assumes that the given <code>right</code> matrix represents an {@link #isAffine() affine} transformation (i.e. its last row is equal to <code>(0, 0, 0, 1)</code>) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination). <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the transformation of the right matrix will be applied first!
Component-wise multiply <code>this</code> by <code>other</code>.
Pre-multiply this matrix by the supplied <code>left</code> matrix and store the result in <code>this</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the <code>left</code> matrix, then the new matrix will be <code>L * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>L * M * v</code>, the transformation of <code>this</code> matrix will be applied first!
Pre-multiply this matrix by the supplied <code>left</code> matrix, both of which are assumed to be {@link #isAffine() affine}, and store the result in <code>this</code>. <p> This method assumes that <code>this</code> matrix and the given <code>left</code> matrix both represent an {@link #isAffine() affine} transformation (i.e. their last rows are equal to <code>(0, 0, 0, 1)</code>) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination). <p> This method will not modify either the last row of <code>this</code> or the last row of <code>left</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the <code>left</code> matrix, then the new matrix will be <code>L * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>L * M * v</code>, the transformation of <code>this</code> matrix will be applied first!
Multiply <code>this</code> orthographic projection matrix by the supplied {@link #isAffine() affine} <code>view</code> matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>V</code> the <code>view</code> matrix, then the new matrix will be <code>M * V</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * V * v</code>, the transformation of the <code>view</code> matrix will be applied first!
Multiply <code>this</code> symmetric perspective projection matrix by the supplied {@link #isAffine() affine} <code>view</code> matrix. <p> If <code>P</code> is <code>this</code> matrix and <code>V</code> the <code>view</code> matrix, then the new matrix will be <code>P * V</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>P * V * v</code>, the transformation of the <code>view</code> matrix will be applied first!
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1 </pre>
Compute a normal matrix from the upper left 3x3 submatrix of <code>this</code> and store it into <code>dest</code>. <p> The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>. <p> Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix. In that case, use {@link Matrix3d#set(Matrix4d)} to set a given Matrix3d to only the upper left 3x3 submatrix of this matrix.
Compute a normal matrix from the upper left 3x3 submatrix of <code>this</code> and store it into the upper left 3x3 submatrix of <code>dest</code>. All other values of <code>dest</code> will be set to {@link #identity() identity}. <p> The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>. <p> Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix. In that case, use {@link #set3x3(Matrix4d)} to set a given Matrix4d to only the upper left 3x3 submatrix of a given matrix.
Compute a normal matrix from the upper left 3x3 submatrix of <code>this</code> and store it into the upper left 3x3 submatrix of <code>this</code>. All other values of <code>this</code> will be set to {@link #identity() identity}. <p> The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>. <p> Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix. In that case, use {@link #set3x3(Matrix4d)} to set a given Matrix4f to only the upper left 3x3 submatrix of this matrix.
Normalize the upper left 3x3 submatrix of this matrix. <p> The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had <i>skewing</i>).
Apply an oblique projection transformation to this matrix with the given values for <code>a</code> and <code>b</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the oblique transformation matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the oblique transformation will be applied first! <p> The oblique transformation is defined as: <pre> x' = x + a*z y' = y + a*z z' = z </pre> or in matrix form: <pre> 1 0 a 0 0 1 b 0 0 0 1 0 0 0 0 1 </pre>
Apply an oblique projection transformation to this matrix with the given values for <code>a</code> and <code>b</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the oblique transformation matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the oblique transformation will be applied first! <p> The oblique transformation is defined as: <pre> x' = x + a*z y' = y + a*z z' = z </pre> or in matrix form: <pre> 1 0 a 0 0 1 b 0 0 0 1 0 0 0 0 1 </pre>
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho(double, double, double, double, double, double) setOrtho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho(double, double, double, double, double, double, bool) setOrtho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho(double, double, double, double, double, double) setOrtho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho(double, double, double, double, double, double, bool) setOrtho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double) ortho()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho2D(double, double, double, double) setOrtho2D()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, Matrix4d) ortho()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho2D(double, double, double, double) setOrtho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double) orthoLH()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho2DLH(double, double, double, double) setOrtho2DLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, Matrix4d) orthoLH()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho2DLH(double, double, double, double) setOrthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrthoLH(double, double, double, double, double, double, bool) setOrthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrthoLH(double, double, double, double, double, double, bool) setOrthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double) ortho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetric(double, double, double, double) setOrthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, bool) ortho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetric(double, double, double, double, bool) setOrthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, Matrix4d) ortho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetric(double, double, double, double) setOrthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, bool, Matrix4d) ortho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetric(double, double, double, double, bool) setOrthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double) orthoLH()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetricLH(double, double, double, double) setOrthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, bool) orthoLH()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetricLH(double, double, double, double, bool) setOrthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, Matrix4d) orthoLH()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetricLH(double, double, double, double) setOrthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, bool, Matrix4d) orthoLH()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetricLH(double, double, double, double, bool) setOrthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspective(double, double, double, double) setPerspective}.
Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspective(double, double, double, double, bool) setPerspective}.
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspective(double, double, double, double) setPerspective}.
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspective(double, double, double, double, bool) setPerspective}.
Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveLH(double, double, double, double) setPerspectiveLH}.
Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveLH(double, double, double, double) setPerspectiveLH}.
Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveLH(double, double, double, double, bool) setPerspectiveLH}.
Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveLH(double, double, double, double, bool) setPerspectiveLH}.
Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> The given angles <code>offAngleX</code> and <code>offAngleY</code> are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when <code>offAngleY</code> is just <code>fovy/2</code> then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveOffCenter(double, double, double, double, double, double) setPerspectiveOffCenter}.
Apply an asymmetric off-center perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix. <p> The given angles <code>offAngleX</code> and <code>offAngleY</code> are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when <code>offAngleY</code> is just <code>fovy/2</code> then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveOffCenter(double, double, double, double, double, double, bool) setPerspectiveOffCenter}.
Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> The given angles <code>offAngleX</code> and <code>offAngleY</code> are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when <code>offAngleY</code> is just <code>fovy/2</code> then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveOffCenter(double, double, double, double, double, double) setPerspectiveOffCenter}.
Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> The given angles <code>offAngleX</code> and <code>offAngleY</code> are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when <code>offAngleY</code> is just <code>fovy/2</code> then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveOffCenter(double, double, double, double, double, double, bool) setPerspectiveOffCenter}.
Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> The given angles <code>angleLeft</code> and <code>angleRight</code> are the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The angles <code>angleDown</code> and <code>angleUp</code> are the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveOffCenterFov(double, double, double, double, double, double) setPerspectiveOffCenterFov}.
Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix. <p> The given angles <code>angleLeft</code> and <code>angleRight</code> are the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The angles <code>angleDown</code> and <code>angleUp</code> are the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveOffCenterFov(double, double, double, double, double, double, bool) setPerspectiveOffCenterFov}.
Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> The given angles <code>angleLeft</code> and <code>angleRight</code> are the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The angles <code>angleDown</code> and <code>angleUp</code> are the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveOffCenterFovLH(double, double, double, double, double, double) setPerspectiveOffCenterFovLH}.
Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix. <p> The given angles <code>angleLeft</code> and <code>angleRight</code> are the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The angles <code>angleDown</code> and <code>angleUp</code> are the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveOffCenterFovLH(double, double, double, double, double, double, bool) setPerspectiveOffCenterFovLH}.
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveRect(double, double, double, double) setPerspectiveRect}.
Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveRect(double, double, double, double, bool) setPerspectiveRect}.
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveRect(double, double, double, double) setPerspectiveRect}.
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>P</code> the perspective projection matrix, then the new matrix will be <code>M * P</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * P * v</code>, the perspective projection will be applied first! <p> In order to set the matrix to a perspective frustum transformation without post-multiplying, use {@link #setPerspectiveRect(double, double, double, double, bool) setPerspectiveRect}.
Apply a picking transformation to this matrix using the given window coordinates <code>(x, y)</code> as the pick center and the given <code>(width, height)</code> as the size of the picking region in window coordinates.
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane. <p> This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaterniond} is the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>, offset by the given <code>point</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first!
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first!
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first!
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation <code>x*a + y*b + z*c + d = 0</code>. <p> The vector <code>(a, b, c)</code> must be a unit vector. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first! <p> Reference: <a href="https://msdn.microsoft.com/en-us/library/windows/desktop/bb281733(v=vs.85).aspx">msdn.microsoft.com</a>
Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane. <p> This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaterniond} is the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>, offset by the given <code>point</code>.
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation <code>x*a + y*b + z*c + d = 0</code>. <p> The vector <code>(a, b, c)</code> must be a unit vector. <p> Reference: <a href="https://msdn.microsoft.com/en-us/library/windows/desktop/bb281733(v=vs.85).aspx">msdn.microsoft.com</a>
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code> , the rotation will be applied first! <p> In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}.
Apply a rotation transformation, rotating about the given {@link AxisAngle4d}, to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4d}, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the {@link AxisAngle4d} rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(ref AxisAngle4d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(ref Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(ref Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Apply a rotation transformation, rotating about the given {@link AxisAngle4d} and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4d}, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the {@link AxisAngle4d} rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(ref AxisAngle4d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the axis-angle rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(double, Vector3d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply a rotation transformation, rotating the given radians about the specified axis and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the axis-angle rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(double, Vector3d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this {@link #isAffine() affine} matrix and store the result in <code>dest</code>. <p> This method assumes <code>this</code> to be {@link #isAffine() affine}. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(ref Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix. <p> This method assumes <code>this</code> to be {@link #isAffine() affine}. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(ref Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Apply rotation to this {@link #isAffine() affine} matrix by rotating the given amount of radians about the specified <code>(x, y, z)</code> axis. <p> This method assumes <code>this</code> to be {@link #isAffine() affine}. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Apply rotation to this {@link #isAffine() affine} matrix by rotating the given amount of radians about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>. <p> This method assumes <code>this</code> to be {@link #isAffine() affine}. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Apply rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method assumes that <code>this</code> matrix represents an {@link #isAffine() affine} transformation (i.e. its last row is equal to <code>(0, 0, 0, 1)</code>) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination). <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateX(angleX).rotateY(angleY).rotateZ(angleZ)</code>
Apply rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method assumes that <code>this</code> matrix represents an {@link #isAffine() affine} transformation (i.e. its last row is equal to <code>(0, 0, 0, 1)</code>) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination). <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
Apply rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method assumes that <code>this</code> matrix represents an {@link #isAffine() affine} transformation (i.e. its last row is equal to <code>(0, 0, 0, 1)</code>) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination). <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
Apply the rotation transformation of the given {@link Quaterniond} to this matrix while using <code>(ox, oy, oz)</code> as the rotation origin. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> This method is equivalent to calling: <code>translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)</code> <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix while using <code>(ox, oy, oz)</code> as the rotation origin. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>Q * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>Q * M * v</code>, the quaternion rotation will be applied last! <p> This method is equivalent to calling: <code>translateLocal(-ox, -oy, -oz).rotateLocal(quat).translateLocal(ox, oy, oz)</code> <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>Q * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>Q * M * v</code>, the quaternion rotation will be applied last! <p> In order to set the matrix to a rotation transformation without pre-multiplying, use {@link #rotation(ref Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>Q * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>Q * M * v</code>, the quaternion rotation will be applied last! <p> In order to set the matrix to a rotation transformation without pre-multiplying, use {@link #rotation(ref Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified <code>(x, y, z)</code> axis. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationX(double) rotationX()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationX(double) rotationX()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationY(double) rotationY()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationY(double) rotationY()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationZ(double) rotationY()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationZ(double) rotationZ()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>dir</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(double, double, double, double, double, double) rotationTowards()}. <p> This method is equivalent to calling: <code>mulAffine(new Matrix4d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invertAffine(), dest)</code>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>(dirX, dirY, dirZ)</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(double, double, double, double, double, double) rotationTowards()}. <p> This method is equivalent to calling: <code>mulAffine(new Matrix4d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invertAffine())</code>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>direction</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(ref Vector3d, Vector3d) rotationTowards()}. <p> This method is equivalent to calling: <code>mulAffine(new Matrix4d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invertAffine())</code>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>direction</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(ref Vector3d, Vector3d) rotationTowards()}. <p> This method is equivalent to calling: <code>mulAffine(new Matrix4d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invertAffine(), dest)</code>
Apply rotation about the Z axis to align the local <code>+X</code> towards <code>(dirX, dirY)</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> The vector <code>(dirX, dirY)</code> must be a unit vector.
Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix, which is assumed to only contain a translation, and store the result in <code>dest</code>. <p> This method assumes <code>this</code> to only contain a translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(ref Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>. <p> This method assumes <code>this</code> to only contain a translation. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Apply rotation about the X axis to this matrix by rotating the given amount of radians. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Apply rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateX(angleX).rotateY(angleY).rotateZ(angleZ)</code>
Apply rotation of <code>angles.x</code> radians about the X axis, followed by a rotation of <code>angles.y</code> radians about the Y axis and followed by a rotation of <code>angles.z</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)</code>
Apply rotation about the Y axis to this matrix by rotating the given amount of radians. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Apply rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateY(angleY).rotateX(angleX).rotateZ(angleZ)</code>
Apply rotation of <code>angles.y</code> radians about the Y axis, followed by a rotation of <code>angles.x</code> radians about the X axis and followed by a rotation of <code>angles.z</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)</code>
Apply rotation about the Z axis to this matrix by rotating the given amount of radians. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Apply rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateZ(angleZ).rotateY(angleY).rotateX(angleX)</code>
Apply rotation of <code>angles.z</code> radians about the Z axis, followed by a rotation of <code>angles.y</code> radians about the Y axis and followed by a rotation of <code>angles.x</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)</code>
Set this matrix to a rotation matrix which rotates the given radians about a given axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> From <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">Wikipedia</a>
Set this matrix to a rotation matrix which rotates the given radians about a given axis. <p> The axis described by the <code>axis</code> vector needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Set this matrix to the rotation - and possibly scaling - transformation of the given {@link Quaterniond}. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation. <p> In order to apply the rotation transformation to an existing transformation, use {@link #rotate(ref Quaterniond) rotate()} instead. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Set this matrix to a rotation transformation using the given {@link AxisAngle4d}. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation. <p> In order to apply the rotation transformation to an existing transformation, use {@link #rotate(ref AxisAngle4d) rotate()} instead. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Set this matrix to a transformation composed of a rotation of the specified {@link Quaterniond} while using <code>(ox, oy, oz)</code> as the rotation origin. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)</code> <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local <code>-z</code> axis with <code>dir</code>. <p> In order to apply the rotation transformation to a previous existing transformation, use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}. <p> This method is equivalent to calling: <code>setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invertAffine()</code>
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local <code>-z</code> axis with <code>dir</code>. <p> In order to apply the rotation transformation to a previous existing transformation, use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}. <p> This method is equivalent to calling: <code>setLookAt(new Vector3d(), new Vector3d(dir).negate(), up).invertAffine()</code>
Set this matrix to a rotation transformation about the Z axis to align the local <code>+X</code> towards <code>(dirX, dirY)</code>. <p> The vector <code>(dirX, dirY)</code> must be a unit vector.
Set this matrix to a rotation transformation about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Set this matrix to a rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>rotationX(angleX).rotateY(angleY).rotateZ(angleZ)</code>
Set this matrix to a rotation transformation about the Y axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Set this matrix to a rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>rotationY(angleY).rotateX(angleX).rotateZ(angleZ)</code>
Set this matrix to a rotation transformation about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Set this matrix to a rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>rotationZ(angleZ).rotateY(angleY).rotateX(angleX)</code>
Apply scaling to this matrix by scaling the base axes by the given <code>xyz.x</code>, <code>xyz.y</code> and <code>xyz.z</code> factors, respectively. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
Apply scaling to <code>this</code> matrix by scaling the base axes by the given x, y and z factors. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code> , the scaling will be applied first!
Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code> , the scaling will be applied first!
Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using <code>(ox, oy, oz)</code> as the scaling origin. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first! <p> This method is equivalent to calling: <code>translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)</code>
Apply scaling to this matrix by scaling all three base axes by the given <code>factor</code> while using <code>(ox, oy, oz)</code> as the scaling origin. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first! <p> This method is equivalent to calling: <code>translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)</code>
Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using <code>(ox, oy, oz)</code> as the scaling origin. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>S * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the scaling will be applied last! <p> This method is equivalent to calling: <code>new Matrix4d().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, this)</code>
Pre-multiply scaling to this matrix by scaling all three base axes by the given <code>factor</code> while using <code>(ox, oy, oz)</code> as the scaling origin. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>S * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the scaling will be applied last! <p> This method is equivalent to calling: <code>new Matrix4d().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, this)</code>
Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>S * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the scaling will be applied last!
Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>S * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the scaling will be applied last!
Apply scaling to this matrix by scaling the X axis by <code>x</code> and the Y axis by <code>y</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling. <p> In order to post-multiply a scaling transformation directly to a matrix, use {@link #scale(double) scale()} instead.
Set this matrix to be a simple scale matrix.
Set this matrix to be a simple scale matrix which scales the base axes by <code>xyz.x</code>, <code>xyz.y</code> and <code>xyz.z</code>, respectively. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling. <p> In order to post-multiply a scaling transformation directly to a matrix use {@link #scale(ref Vector3d) scale()} instead.
Set the values in the matrix using a double array that contains the matrix elements in column-major order. <p> The results will look like this:<br><br>
Set the values in the matrix using a float array that contains the matrix elements in column-major order. <p> The results will look like this:<br><br>
Set the values in the matrix using a float array that contains the matrix elements in column-major order. <p> The results will look like this:<br><br>
Set the four columns of this matrix to the supplied vectors, respectively.
Set the values within this matrix to the supplied double values. The matrix will look like this:<br><br>
Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given {@link Quaterniond}. <p> This method is equivalent to calling: <code>rotation(q)</code> <p> Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/">http://www.euclideanspace.com/</a>
Set this matrix to be equivalent to the rotation specified by the given {@link AxisAngle4d}.
Set the upper left 3x3 submatrix of this {@link Matrix4d} to the given {@link Matrix3d} and the rest to identity.
Store the values of the given matrix <code>m</code> into <code>this</code> matrix and set the other matrix elements to identity.
Store the values of the given matrix <code>m</code> into <code>this</code> matrix.
Set the values in the matrix using a double array that contains the matrix elements in column-major order. <p> The results will look like this:<br><br>
Set the matrix element at the given column and row to the specified value.
Set the upper left 3x3 submatrix of this {@link Matrix4d} to the given {@link Matrix3d} and don't change the other elements.
Set the upper left 3x3 submatrix of this {@link Matrix4d} to that of the given {@link Matrix4d} and don't change the other elements.
Set the upper 4x3 submatrix of this {@link Matrix4d} to the given {@link Matrix4x3d} and don't change the other elements.
Set the upper 4x3 submatrix of this {@link Matrix4d} to the upper 4x3 submatrix of the given {@link Matrix4d} and don't change the other elements.
Set the column at the given <code>column</code> index, starting with <code>0</code>.
Set this matrix to represent a perspective projection equivalent to the given intrinsic camera calibration parameters. The resulting matrix will be suited for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> See: <a href="https://en.wikipedia.org/wiki/Camera_resectioning#Intrinsic_parameters">https://en.wikipedia.org/</a> <p> Reference: <a href="http://ksimek.github.io/2013/06/03/calibrated_cameras_in_opengl/">http://ksimek.github.io/</a>
Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range. <p> In order to apply the perspective frustum transformation to an existing transformation, use {@link #frustum(double, double, double, double, double, double, bool) frustum()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> In order to apply the perspective frustum transformation to an existing transformation, use {@link #frustum(double, double, double, double, double, double) frustum()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> In order to apply the perspective frustum transformation to an existing transformation, use {@link #frustumLH(double, double, double, double, double, double, bool) frustumLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> In order to apply the perspective frustum transformation to an existing transformation, use {@link #frustumLH(double, double, double, double, double, double) frustumLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective">http://www.songho.ca</a>
Set this matrix to a rotation transformation to make <code>-z</code> point along <code>dir</code>. <p> This is equivalent to calling {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to apply the lookalong transformation to any previous existing transformation, use {@link #lookAlong(double, double, double, double, double, double) lookAlong()}
Set this matrix to a rotation transformation to make <code>-z</code> point along <code>dir</code>. <p> This is equivalent to calling {@link #setLookAt(ref Vector3d, Vector3d, Vector3d) setLookAt()} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to apply the lookalong transformation to any previous existing transformation, use {@link #lookAlong(ref Vector3d, Vector3d)}.
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code>. <p> In order to apply the lookat transformation to a previous existing transformation, use {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt}.
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code>. <p> In order to not make use of vectors to specify <code>eye</code>, <code>center</code> and <code>up</code> but use primitives, like in the GLU function, use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()} instead. <p> In order to apply the lookat transformation to a previous existing transformation, use {@link #lookAt(ref Vector3d, Vector3d, Vector3d) lookAt()}.
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code>. <p> In order to apply the lookat transformation to a previous existing transformation, use {@link #lookAtLH(double, double, double, double, double, double, double, double, double) lookAtLH}.
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code>. <p> In order to not make use of vectors to specify <code>eye</code>, <code>center</code> and <code>up</code> but use primitives, like in the GLU function, use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()} instead. <p> In order to apply the lookat transformation to a previous existing transformation, use {@link #lookAtLH(ref Vector3d, Vector3d, Vector3d) lookAt()}.
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #ortho(double, double, double, double, double, double) ortho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #ortho(double, double, double, double, double, double, bool) ortho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system. <p> This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrtho()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #ortho2D(double, double, double, double) ortho2D()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system. <p> This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrthoLH()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #ortho2DLH(double, double, double, double) ortho2DLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #orthoLH(double, double, double, double, double, double) orthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #orthoLH(double, double, double, double, double, double, bool) orthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrtho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> In order to apply the symmetric orthographic projection to an already existing transformation, use {@link #orthoSymmetric(double, double, double, double) orthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range. <p> This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double, bool) setOrtho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> In order to apply the symmetric orthographic projection to an already existing transformation, use {@link #orthoSymmetric(double, double, double, double, bool) orthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> This method is equivalent to calling {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> In order to apply the symmetric orthographic projection to an already existing transformation, use {@link #orthoSymmetricLH(double, double, double, double) orthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range. <p> This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double, bool) setOrtho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> In order to apply the symmetric orthographic projection to an already existing transformation, use {@link #orthoSymmetricLH(double, double, double, double, bool) orthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspective(double, double, double, double) perspective()}.
Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspective(double, double, double, double, bool) perspective()}.
Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range of <code>[-1..+1]</code>. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspectiveLH(double, double, double, double, bool) perspectiveLH()}.
Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspectiveLH(double, double, double, double) perspectiveLH()}.
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> The given angles <code>offAngleX</code> and <code>offAngleY</code> are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when <code>offAngleY</code> is just <code>fovy/2</code> then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspectiveOffCenter(double, double, double, double, double, double) perspectiveOffCenter()}.
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range. <p> The given angles <code>offAngleX</code> and <code>offAngleY</code> are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when <code>offAngleY</code> is just <code>fovy/2</code> then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspectiveOffCenter(double, double, double, double, double, double) perspectiveOffCenter()}.
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> The given angles <code>angleLeft</code> and <code>angleRight</code> are the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The angles <code>angleDown</code> and <code>angleUp</code> are the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspectiveOffCenterFov(double, double, double, double, double, double) perspectiveOffCenterFov()}.
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range. <p> The given angles <code>angleLeft</code> and <code>angleRight</code> are the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The angles <code>angleDown</code> and <code>angleUp</code> are the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspectiveOffCenterFov(double, double, double, double, double, double, bool) perspectiveOffCenterFov()}.
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> The given angles <code>angleLeft</code> and <code>angleRight</code> are the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The angles <code>angleDown</code> and <code>angleUp</code> are the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspectiveOffCenterFovLH(double, double, double, double, double, double) perspectiveOffCenterFovLH()}.
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range. <p> The given angles <code>angleLeft</code> and <code>angleRight</code> are the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The angles <code>angleDown</code> and <code>angleUp</code> are the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspectiveOffCenterFovLH(double, double, double, double, double, double, bool) perspectiveOffCenterFovLH()}.
Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspectiveRect(double, double, double, double, bool) perspectiveRect()}.
Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> In order to apply the perspective projection transformation to an existing transformation, use {@link #perspectiveRect(double, double, double, double) perspectiveRect()}.
Set only the upper left 3x3 submatrix of this matrix to a rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Set only the upper left 3x3 submatrix of this matrix to a rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Set only the upper left 3x3 submatrix of this matrix to a rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Set the row at the given <code>row</code> index, starting with <code>0</code>.
Set the matrix element at the given row and column to the specified value.
Set only the translation components <code>(m30, m31, m32)</code> of this matrix to the given values <code>(xyz.x, xyz.y, xyz.z)</code>. <p> To build a translation matrix instead, use {@link #translation(ref Vector3d)}. To apply a translation, use {@link #translate(ref Vector3d)}.
Set only the translation components <code>(m30, m31, m32)</code> of this matrix to the given values <code>(x, y, z)</code>. <p> To build a translation matrix instead, use {@link #translation(double, double, double)}. To apply a translation, use {@link #translate(double, double, double)}.
Store the values of the transpose of the given matrix <code>m</code> into <code>this</code> matrix.
Set the value of the matrix element at column 0 and row 0.
Set the value of the matrix element at column 0 and row 1.
Set the value of the matrix element at column 0 and row 2.
Set the value of the matrix element at column 0 and row 3.
Set the value of the matrix element at column 1 and row 0.
Set the value of the matrix element at column 1 and row 1.
Set the value of the matrix element at column 1 and row 2.
Set the value of the matrix element at column 1 and row 3.
Set the value of the matrix element at column 2 and row 0.
Set the value of the matrix element at column 2 and row 1.
Set the value of the matrix element at column 2 and row 2.
Set the value of the matrix element at column 2 and row 3.
Set the value of the matrix element at column 3 and row 0.
Set the value of the matrix element at column 3 and row 1.
Set the value of the matrix element at column 3 and row 2.
Set the value of the matrix element at column 3 and row 3.
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation <code>x*a + y*b + z*c + d = 0</code> as if casting a shadow from a given light position/direction <code>light</code>. <p> If <code>light.w</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the shadow projection will be applied first! <p> Reference: <a href="ftp://ftp.sgi.com/opengl/contrib/blythe/advanced99/notes/node192.html">ftp.sgi.com</a>
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation <code>x*a + y*b + z*c + d = 0</code> as if casting a shadow from a given light position/direction <code>(lightX, lightY, lightZ, lightW)</code>. <p> If <code>lightW</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the shadow projection will be applied first! <p> Reference: <a href="ftp://ftp.sgi.com/opengl/contrib/blythe/advanced99/notes/node192.html">ftp.sgi.com</a>
Apply a projection transformation to this matrix that projects onto the plane with the general plane equation <code>y = 0</code> as if casting a shadow from a given light position/direction <code>light</code>. <p> Before the shadow projection is applied, the plane is transformed via the specified <code>planeTransformation</code>. <p> If <code>light.w</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the shadow projection will be applied first!
Apply a projection transformation to this matrix that projects onto the plane with the general plane equation <code>y = 0</code> as if casting a shadow from a given light position/direction <code>(lightX, lightY, lightZ, lightW)</code>. <p> Before the shadow projection is applied, the plane is transformed via the specified <code>planeTransformation</code>. <p> If <code>lightW</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the shadow projection will be applied first!
Component-wise subtract <code>subtrahend</code> from <code>this</code>.
Component-wise subtract the upper 4x3 submatrices of <code>subtrahend</code> from <code>this</code>.
Exchange the values of <code>this</code> matrix with the given <code>other</code> matrix.
This method is equivalent to calling: <code>translate(w-1-2*x, h-1-2*y, 0).scale(w, h, 1)</code> <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the created transformation matrix, then the new matrix will be <code>M * T</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * T * v</code>, the created transformation will be applied first!
Apply a translation to this matrix by translating by the given number of units in x, y and z. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>M * T</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * T * v</code>, the translation will be applied first! <p> In order to set the matrix to a translation transformation without post-multiplying it, use {@link #translation(ref Vector3d)}.
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>M * T</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * T * v</code>, the translation will be applied first! <p> In order to set the matrix to a translation transformation without post-multiplying it, use {@link #translation(ref Vector3d)}.
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>M * T</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * T * v</code>, the translation will be applied first! <p> In order to set the matrix to a translation transformation without post-multiplying it, use {@link #translation(double, double, double)}.
Apply a translation to this matrix by translating by the given number of units in x, y and z. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>M * T</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * T * v</code>, the translation will be applied first! <p> In order to set the matrix to a translation transformation without post-multiplying it, use {@link #translation(double, double, double)}.
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>T * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>T * M * v</code>, the translation will be applied last! <p> In order to set the matrix to a translation transformation without pre-multiplying it, use {@link #translation(ref Vector3d)}.
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>T * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>T * M * v</code>, the translation will be applied last! <p> In order to set the matrix to a translation transformation without pre-multiplying it, use {@link #translation(ref Vector3d)}.
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>T * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>T * M * v</code>, the translation will be applied last! <p> In order to set the matrix to a translation transformation without pre-multiplying it, use {@link #translation(double, double, double)}.
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>T * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>T * M * v</code>, the translation will be applied last! <p> In order to set the matrix to a translation transformation without pre-multiplying it, use {@link #translation(double, double, double)}.
Set this matrix to be a simple translation matrix. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.
Set this matrix to be a simple translation matrix. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.
Set <code>this</code> matrix to <code>T * R</code>, where <code>T</code> is the given <code>translation</code> and <code>R</code> is a rotation transformation specified by the given quaternion. <p> When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(translation).rotate(quat)</code>
Set <code>this</code> matrix to <code>T * R</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code> and <code>R</code> is a rotation - and possibly scaling - transformation specified by the given quaternion. <p> When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat)</code>
Set <code>this</code> matrix to <code>T * R</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code> and <code>R</code> is a rotation - and possibly scaling - transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>. <p> When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat)</code>
Set <code>this</code> matrix to <code>(T * R)<sup>-1</sup></code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code> and <code>R</code> is a rotation transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>. <p> This method is equivalent to calling: <code>translationRotate(...).invert()</code>
Set <code>this</code> matrix to <code>T * R * S</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code>, <code>R</code> is a rotation transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>, and <code>S</code> is a scaling transformation which scales the three axes x, y and z by <code>(sx, sy, sz)</code>. <p> When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)</code>
Set <code>this</code> matrix to <code>T * R * S</code>, where <code>T</code> is the given <code>translation</code>, <code>R</code> is a rotation transformation specified by the given quaternion, and <code>S</code> is a scaling transformation which scales the axes by <code>scale</code>. <p> When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(translation).rotate(quat).scale(scale)</code>
Set <code>this</code> matrix to <code>T * R * S</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code>, <code>R</code> is a rotation transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>, and <code>S</code> is a scaling transformation which scales all three axes by <code>scale</code>. <p> When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat).scale(scale)</code>
Set <code>this</code> matrix to <code>T * R * S</code>, where <code>T</code> is the given <code>translation</code>, <code>R</code> is a rotation transformation specified by the given quaternion, and <code>S</code> is a scaling transformation which scales all three axes by <code>scale</code>. <p> When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(translation).rotate(quat).scale(scale)</code>
Set <code>this</code> matrix to <code>(T * R * S)<sup>-1</sup></code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code>, <code>R</code> is a rotation transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>, and <code>S</code> is a scaling transformation which scales the three axes x, y and z by <code>(sx, sy, sz)</code>. <p> This method is equivalent to calling: <code>translationRotateScale(...).invert()</code>
Set <code>this</code> matrix to <code>(T * R * S)<sup>-1</sup></code>, where <code>T</code> is the given <code>translation</code>, <code>R</code> is a rotation transformation specified by the given quaternion, and <code>S</code> is a scaling transformation which scales all three axes by <code>scale</code>. <p> This method is equivalent to calling: <code>translationRotateScale(...).invert()</code>
Set <code>this</code> matrix to <code>(T * R * S)<sup>-1</sup></code>, where <code>T</code> is the given <code>translation</code>, <code>R</code> is a rotation transformation specified by the given quaternion, and <code>S</code> is a scaling transformation which scales the axes by <code>scale</code>. <p> This method is equivalent to calling: <code>translationRotateScale(...).invert()</code>
Set <code>this</code> matrix to <code>T * R * S * M</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code>, <code>R</code> is a rotation - and possibly scaling - transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>, <code>S</code> is a scaling transformation which scales the three axes x, y and z by <code>(sx, sy, sz)</code> and <code>M</code> is an {@link #isAffine() affine} matrix. <p> When transforming a vector by the resulting matrix the transformation described by <code>M</code> will be applied first, then the scaling, then rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mulAffine(m)</code>
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given <code>(posX, posY, posZ)</code> and aligns the local <code>-z</code> axis with <code>(dirX, dirY, dirZ)</code>. <p> This method is equivalent to calling: <code>translation(posX, posY, posZ).rotateTowards(dirX, dirY, dirZ, upX, upY, upZ)</code>
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given <code>pos</code> and aligns the local <code>-z</code> axis with <code>dir</code>. <p> This method is equivalent to calling: <code>translation(pos).rotateTowards(dir, up)</code>
Transpose this matrix.
Transpose only the upper left 3x3 submatrix of this matrix. <p> All other matrix elements are left unchanged.
Set <code>this</code> matrix to a perspective transformation that maps the trapezoid spanned by the four corner coordinates <code>(p0x, p0y)</code>, <code>(p1x, p1y)</code>, <code>(p2x, p2y)</code> and <code>(p3x, p3y)</code> to the unit square <code>[(-1, -1)..(+1, +1)]</code>. <p> The corner coordinates are given in counter-clockwise order starting from the <i>left</i> corner on the smaller parallel side of the trapezoid seen when looking at the trapezoid oriented with its shorter parallel edge at the bottom and its longer parallel edge at the top. <p> Reference: <a href="http://www.comp.nus.edu.sg/~tants/tsm/TSM_recipe.html">Trapezoidal Shadow Maps (TSM) - Recipe</a>
Apply a transformation to this matrix to ensure that the local Y axis (as obtained by {@link #positiveY(ref Vector3d)}) will be coplanar to the plane spanned by the local Z axis (as obtained by {@link #positiveZ(ref Vector3d)}) and the given vector <code>(upX, upY, upZ)</code>. <p> This effectively ensures that the resulting matrix will be equal to the one obtained from {@link #setLookAt(double, double, double, double, double, double, double, double, double)} called with the current local origin of this matrix (as obtained by {@link #originAffine(ref Vector3d)}), the sum of this position and the negated local Z axis as well as the given vector <code>(upX, upY, upZ)</code>. <p> This method must only be called on {@link #isAffine()} matrices.
Apply a transformation to this matrix to ensure that the local Y axis (as obtained by {@link #positiveY(ref Vector3d)}) will be coplanar to the plane spanned by the local Z axis (as obtained by {@link #positiveZ(ref Vector3d)}) and the given vector <code>up</code>. <p> This effectively ensures that the resulting matrix will be equal to the one obtained from {@link #setLookAt(ref Vector3d, Vector3d, Vector3d)} called with the current local origin of this matrix (as obtained by {@link #originAffine(ref Vector3d)}), the sum of this position and the negated local Z axis as well as the given vector <code>up</code>. <p> This method must only be called on {@link #isAffine()} matrices.
Set all the values within this matrix to 0.
Create a view and projection matrix from a given <code>eye</code> position, a given bottom left corner position <code>p</code> of the near plane rectangle and the extents of the near plane rectangle along its local <code>x</code> and <code>y</code> axes, and store the resulting matrices in <code>projDest</code> and <code>viewDest</code>. <p> This method creates a view and perspective projection matrix assuming that there is a pinhole camera at position <code>eye</code> projecting the scene onto the near plane defined by the rectangle. <p> All positions and lengths are in the same (world) unit.
Argument to the first parameter of {@link #frustumCorner(int, Vector3d)} identifying the corner <code>(-1, -1, -1)</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumCorner(int, Vector3d)} identifying the corner <code>(-1, -1, 1)</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumCorner(int, Vector3d)} identifying the corner <code>(-1, 1, -1)</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumCorner(int, Vector3d)} identifying the corner <code>(-1, 1, 1)</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumCorner(int, Vector3d)} identifying the corner <code>(1, -1, -1)</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumCorner(int, Vector3d)} identifying the corner <code>(1, -1, 1)</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumCorner(int, Vector3d)} identifying the corner <code>(1, 1, -1)</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumCorner(int, Vector3d)} identifying the corner <code>(1, 1, 1)</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>x=-1</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>y=-1</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>z=-1</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>x=1</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>y=1</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>z=1</code> when using the identity matrix.
Bit returned by {@link #properties()} to indicate that the matrix represents an affine transformation.
Bit returned by {@link #properties()} to indicate that the matrix represents the identity transformation.
Bit returned by {@link #properties()} to indicate that the upper-left 3x3 submatrix represents an orthogonal matrix (i.e. orthonormal basis). For practical reasons, this property also always implies {@link #PROPERTY_AFFINE} in this implementation.
Bit returned by {@link #properties()} to indicate that the matrix represents a perspective transformation.
Bit returned by {@link #properties()} to indicate that the matrix represents a pure translation transformation.
Contains the definition of a 4x4 Matrix of doubles, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this: <p> m00 m10 m20 m30<br> m01 m11 m21 m31<br> m02 m12 m22 m32<br> m03 m13 m23 m33<br>
@author Richard Greenlees @author Kai Burjack