Compute linear (non-spherical) interpolations of <code>this</code> and the given quaternion <code>q</code>
iteratively and store the result in <code>this</code>.
<p>
This method performs a series of small-step nlerp interpolations to avoid doing a costly spherical linear interpolation, like
{@link #slerp(Quaterniond, double, Quaterniond) slerp},
by subdividing the rotation arc between <code>this</code> and <code>q</code> via non-spherical linear interpolations as long as
the absolute dot product of <code>this</code> and <code>q</code> is greater than the given <code>dotThreshold</code> parameter.
<p>
Thanks to <code>@theagentd</code> at <a href="http://www.java-gaming.org/">http://www.java-gaming.org/</a> for providing the code.
@param q
the other quaternion
@param alpha
the interpolation factor, between 0.0 and 1.0
@param dotThreshold
the threshold for the dot product of <code>this</code> and <code>q</code> above which this method performs another iteration
of a small-step linear interpolation
@return this
Compute linear (non-spherical) interpolations of <code>this</code> and the given quaternion <code>q</code> iteratively and store the result in <code>this</code>. <p> This method performs a series of small-step nlerp interpolations to avoid doing a costly spherical linear interpolation, like {@link #slerp(Quaterniond, double, Quaterniond) slerp}, by subdividing the rotation arc between <code>this</code> and <code>q</code> via non-spherical linear interpolations as long as the absolute dot product of <code>this</code> and <code>q</code> is greater than the given <code>dotThreshold</code> parameter. <p> Thanks to <code>@theagentd</code> at <a href="http://www.java-gaming.org/">http://www.java-gaming.org/</a> for providing the code.
@param q the other quaternion @param alpha the interpolation factor, between 0.0 and 1.0 @param dotThreshold the threshold for the dot product of <code>this</code> and <code>q</code> above which this method performs another iteration of a small-step linear interpolation @return this