Create a new {@link Matrix3d} by setting its uppper left 2x2 submatrix to the values of the given {@link Matrix2d} and the rest to identity.
Create a new {@link Matrix3d} and initialize it with the values from the given matrix.
Create a new {@link Matrix3d} and make it a copy of the upper left 3x3 of the given {@link Matrix4d}.
Create a new {@link Matrix3d} and initialize its elements with the given values.
Create a new {@link Matrix3d} and initialize its three columns using the supplied vectors.
Set the value of the matrix element at column 0 and row 0.
Set the value of the matrix element at column 0 and row 1.
Set the value of the matrix element at column 0 and row 2.
Set the value of the matrix element at column 1 and row 0.
Set the value of the matrix element at column 1 and row 1.
Set the value of the matrix element at column 1 and row 2.
Set the value of the matrix element at column 2 and row 0.
Set the value of the matrix element at column 2 and row 1.
Set the value of the matrix element at column 2 and row 2.
Component-wise add <code>this</code> and <code>other</code>.
Compute the cofactor matrix of <code>this</code> and store it into <code>dest</code>. <p> The cofactor matrix can be used instead of {@link #normal(Matrix3d)} to transform normals when the orientation of the normals with respect to the surface should be preserved.
Compute the cofactor matrix of <code>this</code>. <p> The cofactor matrix can be used instead of {@link #normal()} to transform normals when the orientation of the normals with respect to the surface should be preserved.
Get the current values of <code>this</code> matrix and store them into <code>dest</code>. <p> This is the reverse method of {@link #set(Matrix3d)} and allows to obtain intermediate calculation results when chaining multiple transformations.
Set this matrix to the identity.
Invert this matrix.
Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code> and store the result in <code>this</code>. <p> If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code> then the result is <code>other</code>.
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(double, double, double, double, double, double) setLookAlong()}
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(double, double, double, double, double, double) setLookAlong()}
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(Vector3d, Vector3d) setLookAlong()}.
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(Vector3d, Vector3d) setLookAlong()}.
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 -1 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 1 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 -1 0 0 0 -1 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 -1 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 1 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 1 0 0 0 0 -1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 1 0 0 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 1 0 0 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 1 0 0 0 0 -1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 1 0 0 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 1 0 0 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 -1 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 1 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 1 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 1 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 -1 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 1 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 -1 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 -1 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 1 0 0 0 -1 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 -1 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 1 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 -1 0 0 0 -1 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 -1 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 -1 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 1 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 -1 0 0 0 0 -1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 -1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 -1 0 0 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 -1 0 0 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 -1 0 0 0 0 -1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 -1 0 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 -1 0 0 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 -1 0 0 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 -1 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 1 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 1 0 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 1 0 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 -1 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 1 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 -1 0 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 -1 0 -1 0 0 </pre>
Multiply this matrix by the supplied matrix. This matrix will be the left one. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the transformation of the right matrix will be applied first!
Component-wise multiply <code>this</code> by <code>other</code>.
Pre-multiply this matrix by the supplied <code>left</code> matrix and store the result in <code>this</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the <code>left</code> matrix, then the new matrix will be <code>L * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>L * M * v</code>, the transformation of <code>this</code> matrix will be applied first!
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 1 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 -1 0 0 0 1 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 1 0 0 0 -1 </pre>
Set <code>this</code> matrix to its own normal matrix. <p> The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>. <p> Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix. In this case, use {@link #set(Matrix3d)} to set a given Matrix3f to this matrix.
Compute a normal matrix from <code>this</code> matrix and store it into <code>dest</code>. <p> The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>. <p> Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix. In this case, use {@link #set(Matrix3d)} to set a given Matrix3d to this matrix.
Apply an oblique projection transformation to this matrix with the given values for <code>a</code> and <code>b</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the oblique transformation matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the oblique transformation will be applied first! <p> The oblique transformation is defined as: <pre> x' = x + a*z y' = y + a*z z' = z </pre> or in matrix form: <pre> 1 0 a 0 1 b 0 0 1 </pre>
Apply an oblique projection transformation to this matrix with the given values for <code>a</code> and <code>b</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the oblique transformation matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the oblique transformation will be applied first! <p> The oblique transformation is defined as: <pre> x' = x + a*z y' = y + a*z z' = z </pre> or in matrix form: <pre> 1 0 a 0 1 b 0 0 1 </pre>
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first!
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first!
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation. <p> This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaterniond} is the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first!
Set this matrix to a mirror/reflection transformation that reflects through the given plane specified via the plane normal.
Set this matrix to a mirror/reflection transformation that reflects through the given plane specified via the plane normal.
Set this matrix to a mirror/reflection transformation that reflects through a plane specified via the plane orientation. <p> This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaterniond} is the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>, offset by the given <code>point</code>.
Apply a rotation transformation, rotating the given radians about the specified axis and store the result in <code>dest</code>. <p> The axis described by the <code>axis</code> vector needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given axis and angle, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the axis-angle rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(double, Vector3d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix. <p> The axis described by the <code>axis</code> vector needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the axis-angle rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(double, Vector3d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply a rotation transformation, rotating about the given {@link AxisAngle4d} and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4d}, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the {@link AxisAngle4d} rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(AxisAngle4d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply a rotation transformation, rotating about the given {@link AxisAngle4d}, to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4d}, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the {@link AxisAngle4d} rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(AxisAngle4d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code> , the rotation will be applied first! <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>Q * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>Q * M * v</code>, the quaternion rotation will be applied last! <p> In order to set the matrix to a rotation transformation without pre-multiplying, use {@link #rotation(Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>Q * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>Q * M * v</code>, the quaternion rotation will be applied last! <p> In order to set the matrix to a rotation transformation without pre-multiplying, use {@link #rotation(Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified <code>(x, y, z)</code> axis. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationX(double) rotationx}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationX(double) rotationx}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationY(double) rotationy}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationY(double) rotationy}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationZ(double) rotationy}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationZ(double) rotationz}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>direction</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(Vector3d, Vector3d) rotationTowards()}. <p> This method is equivalent to calling: <code>mul(new Matrix3d().lookAlong(new Vector3d(dir).negate(), up).invert(), dest)</code>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>direction</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(Vector3d, Vector3d) rotationTowards()}. <p> This method is equivalent to calling: <code>mul(new Matrix3d().lookAlong(new Vector3d(dir).negate(), up).invert())</code>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>direction</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(double, double, double, double, double, double) rotationTowards()}. <p> This method is equivalent to calling: <code>mul(new Matrix3d().lookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert())</code>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>dir</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(double, double, double, double, double, double) rotationTowards()}. <p> This method is equivalent to calling: <code>mul(new Matrix3d().lookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)</code>
Apply rotation about the X axis to this matrix by rotating the given amount of radians. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code> , the rotation will be applied first! <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Apply rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateX(angleX).rotateY(angleY).rotateZ(angleZ)</code>
Apply rotation about the Y axis to this matrix by rotating the given amount of radians. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code> , the rotation will be applied first! <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Apply rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateY(angleY).rotateX(angleX).rotateZ(angleZ)</code>
Apply rotation of <code>angles.y</code> radians about the Y axis, followed by a rotation of <code>angles.x</code> radians about the X axis and followed by a rotation of <code>angles.z</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)</code>
Apply rotation about the Z axis to this matrix by rotating the given amount of radians. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code> , the rotation will be applied first! <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Apply rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateZ(angleZ).rotateY(angleY).rotateX(angleX)</code>
Set this matrix to the rotation - and possibly scaling - transformation of the given {@link Quaterniond}. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation. <p> In order to apply the rotation transformation to an existing transformation, use {@link #rotate(Quaterniond) rotate()} instead. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Set this matrix to a rotation matrix which rotates the given radians about a given axis. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation. <p> In order to apply the rotation transformation to an existing transformation, use {@link #rotate(double, double, double, double) rotate()} instead. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Set this matrix to a rotation transformation using the given {@link AxisAngle4d}. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation. <p> In order to apply the rotation transformation to an existing transformation, use {@link #rotate(AxisAngle4d) rotate()} instead. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Set this matrix to a rotation matrix which rotates the given radians about a given axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation. <p> In order to post-multiply a rotation transformation directly to a matrix, use {@link #rotate(double, Vector3d) rotate()} instead.
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local <code>-z</code> axis with <code>center - eye</code>. <p> In order to apply the rotation transformation to a previous existing transformation, use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}. <p> This method is equivalent to calling: <code>setLookAlong(new Vector3d(dir).negate(), up).invert()</code>
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local <code>-z</code> axis with <code>center - eye</code>. <p> In order to apply the rotation transformation to a previous existing transformation, use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}. <p> This method is equivalent to calling: <code>setLookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert()</code>
Set this matrix to a rotation transformation about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Set this matrix to a rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>rotationX(angleX).rotateY(angleY).rotateZ(angleZ)</code>
Set this matrix to a rotation transformation about the Y axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Set this matrix to a rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>rotationY(angleY).rotateX(angleX).rotateZ(angleZ)</code>
Set this matrix to a rotation transformation about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Set this matrix to a rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>rotationZ(angleZ).rotateY(angleY).rotateX(angleX)</code>
Apply scaling to this matrix by uniformly scaling all base axes by the given <code>xyz</code> factor. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code> , the scaling will be applied first!
Apply scaling to this matrix by scaling the base axes by the given x, y and z factors. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code> , the scaling will be applied first!
Apply scaling to this matrix by scaling the base axes by the given <code>xyz.x</code>, <code>xyz.y</code> and <code>xyz.z</code> factors, respectively. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>S * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the scaling will be applied last!
Set this matrix to be a simple scale matrix which scales the base axes by <code>xyz.x</code>, <code>xyz.y</code> and <code>xyz.z</code> respectively. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling. <p> In order to post-multiply a scaling transformation directly to a matrix use {@link #scale(Vector3d) scale()} instead.
Set this matrix to be a simple scale matrix.
Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling. <p> In order to post-multiply a scaling transformation directly to a matrix, use {@link #scale(double) scale()} instead.
Set the matrix element at the given column and row to the specified value.
Set the three columns of this matrix to the supplied vectors, respectively.
Set the values in this matrix based on the supplied double array. The result looks like this: <p> 0, 3, 6<br> 1, 4, 7<br> 2, 5, 8<br> <p> Only uses the first 9 values, all others are ignored.
Set the values within this matrix to the supplied double values. The result looks like this: <p> m00, m10, m20<br> m01, m11, m21<br> m02, m12, m22<br>
Set this matrix to a rotation - and possibly scaling - equivalent to the given quaternion. <p> This method is equivalent to calling: <code>rotation(q)</code> <p> Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/">http://www.euclideanspace.com/</a>
Set this matrix to be equivalent to the rotation specified by the given {@link AxisAngle4d}.
Set the upper left 2x2 submatrix of this {@link Matrix3d} to the given {@link Matrix2d} and the rest to identity.
Set the elements of this matrix to the upper left 3x3 of the given {@link Matrix4d}.
Set the elements of this matrix to the left 3x3 submatrix of <code>m</code>.
Set the values in this matrix to the ones in m.
Set the column at the given <code>column</code> index, starting with <code>0</code>.
Set the column at the given <code>column</code> index, starting with <code>0</code>.
Set this matrix to a rotation transformation to make <code>-z</code> point along <code>dir</code>. <p> In order to apply the lookalong transformation to any previous existing transformation, use {@link #lookAlong(double, double, double, double, double, double) lookAlong()}
Set this matrix to a rotation transformation to make <code>-z</code> point along <code>dir</code>. <p> In order to apply the lookalong transformation to any previous existing transformation, use {@link #lookAlong(Vector3d, Vector3d)}.
Set the row at the given <code>row</code> index, starting with <code>0</code>.
Set the row at the given <code>row</code> index, starting with <code>0</code>.
Set the matrix element at the given row and column to the specified value.
Set this matrix to a skew-symmetric matrix using the following layout: <pre> 0, a, -b -a, 0, c b, -c, 0 </pre>
Store the values of the transpose of the given matrix <code>m</code> into <code>this</code> matrix.
Set the value of the matrix element at column 0 and row 0.
Set the value of the matrix element at column 0 and row 1.
Set the value of the matrix element at column 0 and row 2.
Set the value of the matrix element at column 1 and row 0.
Set the value of the matrix element at column 1 and row 1.
Set the value of the matrix element at column 1 and row 2.
Set the value of the matrix element at column 2 and row 0.
Set the value of the matrix element at column 2 and row 1.
Set the value of the matrix element at column 2 and row 2.
Component-wise subtract <code>subtrahend</code> from <code>this</code>.
Exchange the values of <code>this</code> matrix with the given <code>other</code> matrix.
Transpose this matrix.
Set all the values within this matrix to 0.
Contains the definition of a 3x3 matrix of doubles, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this: <p> m00 m10 m20<br> m01 m11 m21<br> m02 m12 m22<br>
@author Richard Greenlees @author Kai Burjack