Matrix3d.rotate
- Matrix3d rotate(double ang, double x, double y, double z)
- Matrix3d rotate(double ang, double x, double y, double z, Matrix3d dest)
- Matrix3d rotate(Quaterniond quat)
- Matrix3d rotate(Quaterniond quat, Matrix3d dest)
- Matrix3d rotate(AxisAngle4d axisAngle)
- Matrix3d rotate(AxisAngle4d axisAngle, Matrix3d dest)
- Matrix3d rotate(double angle, Vector3d axis)
- Matrix3d rotate(double angle, Vector3d axis, Matrix3d dest)
doml matrix_3d Matrix3d
constructorsfunctionsvariables
Apply a rotation transformation, rotating about the given {@link AxisAngle4d} and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4d}, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the {@link AxisAngle4d} rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(AxisAngle4d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
@see #rotate(double, double, double, double) @see #rotation(AxisAngle4d)
@param axisAngle the {@link AxisAngle4d} (needs to be {@link AxisAngle4d#normalize() normalized}) @param dest will hold the result @return dest