Create a new {@link AxisAngle4d} with the same values of <code>a</code>.
Create a new {@link AxisAngle4d} from the given {@link Quaterniond}. <p> Reference: <a href= "http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/" >http://www.euclideanspace.com</a>
Create a new {@link AxisAngle4d} with the given values.
Create a new {@link AxisAngle4d} with the given values.
Set the given {@link Quaterniond} to be equivalent to this {@link AxisAngle4d} rotation.
Set the given {@link Matrix4d} to a rotation transformation equivalent to this {@link AxisAngle4d}.
Set the given {@link Matrix3d} to a rotation transformation equivalent to this {@link AxisAngle4d}.
Set the given {@link AxisAngle4d} to this {@link AxisAngle4d}.
Normalize the axis vector.
Increase the rotation angle by the given amount. <p> This method also takes care of wrapping around.
Set this {@link AxisAngle4d} to the given values.
Set this {@link AxisAngle4d} to the given values.
Set this {@link AxisAngle4d} to be equivalent to the given {@link Quaterniond}.
Set this {@link AxisAngle4d} to be equivalent to the rotation of the given {@link Matrix3d}. <p> Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
Set this {@link AxisAngle4d} to be equivalent to the rotational component of the given {@link Matrix4d}. <p> Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
Set this {@link AxisAngle4d} to the values of <code>a</code>.
Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}.
Transform the given vector by the rotation transformation described by this {@link AxisAngle4d} and store the result in <code>dest</code>.
Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}.
Transform the given vector by the rotation transformation described by this {@link AxisAngle4d} and store the result in <code>dest</code>.
Represents a 3D rotation of a given radians about an axis represented as an unit 3D vector. <p> This class uses double-precision components.
@author Kai Burjack