Matrix4x3d.reflect
- Matrix4x3d reflect(double a, double b, double c, double d, Matrix4x3d dest)
- Matrix4x3d reflect(double a, double b, double c, double d)
- Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz)
- Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz, Matrix4x3d dest)
- Matrix4x3d reflect(Vector3d normal, Vector3d point)
- Matrix4x3d reflect(Quaterniond orientation, Vector3d point)
struct Matrix4x3d
ref public return
reflect
- Matrix4x3d reflect(Quaterniond orientation, Vector3d point, Matrix4x3d dest)
- Matrix4x3d reflect(Vector3d normal, Vector3d point, Matrix4x3d dest)
doml matrix_4x3d Matrix4x3d
constructorsfunctionsstatic variablesvariables
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane. <p> This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaterniond} is the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>, offset by the given <code>point</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first!
@param orientation the plane orientation relative to an implied normal vector of <code>(0, 0, 1)</code> @param point a point on the plane @return this