Matrix4x3d.reflect
- Matrix4x3d reflect(double a, double b, double c, double d, Matrix4x3d dest)
- Matrix4x3d reflect(double a, double b, double c, double d)
struct Matrix4x3d
ref public return
reflect
- Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz)
- Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz, Matrix4x3d dest)
- Matrix4x3d reflect(Vector3d normal, Vector3d point)
- Matrix4x3d reflect(Quaterniond orientation, Vector3d point)
- Matrix4x3d reflect(Quaterniond orientation, Vector3d point, Matrix4x3d dest)
- Matrix4x3d reflect(Vector3d normal, Vector3d point, Matrix4x3d dest)
doml matrix_4x3d Matrix4x3d
constructorsfunctionsstatic variablesvariables
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation <code>x*a + y*b + z*c + d = 0</code>. <p> The vector <code>(a, b, c)</code> must be a unit vector. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first! <p> Reference: <a href="https://msdn.microsoft.com/en-us/library/windows/desktop/bb281733(v=vs.85).aspx">msdn.microsoft.com</a>
@param a the x factor in the plane equation @param b the y factor in the plane equation @param c the z factor in the plane equation @param d the constant in the plane equation @return this