Create a new {@link Matrix4x3d} and make it a copy of the given matrix.
Create a new {@link Matrix4x3d} by setting its left 3x3 submatrix to the values of the given {@link Matrix3d} and the rest to identity.
Create a new 4x4 matrix using the supplied double values.
Set the value of the matrix element at column 0 and row 0 without updating the properties of the matrix.
Set the value of the matrix element at column 0 and row 1 without updating the properties of the matrix.
Set the value of the matrix element at column 0 and row 2 without updating the properties of the matrix.
Set the value of the matrix element at column 1 and row 0 without updating the properties of the matrix.
Set the value of the matrix element at column 1 and row 1 without updating the properties of the matrix.
Set the value of the matrix element at column 1 and row 2 without updating the properties of the matrix.
Set the value of the matrix element at column 2 and row 0 without updating the properties of the matrix.
Set the value of the matrix element at column 2 and row 1 without updating the properties of the matrix.
Set the value of the matrix element at column 2 and row 2 without updating the properties of the matrix.
Set the value of the matrix element at column 3 and row 0 without updating the properties of the matrix.
Set the value of the matrix element at column 3 and row 1 without updating the properties of the matrix.
Set the value of the matrix element at column 3 and row 2 without updating the properties of the matrix.
Component-wise add <code>this</code> and <code>other</code>.
Apply an arcball view transformation to this matrix with the given <code>radius</code> and <code>center</code> position of the arcball and the specified X and Y rotation angles. <p> This method is equivalent to calling: <code>translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)</code>
Apply an arcball view transformation to this matrix with the given <code>radius</code> and center <code>(centerX, centerY, centerZ)</code> position of the arcball and the specified X and Y rotation angles. <p> This method is equivalent to calling: <code>translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)</code>
Assume the given properties about this matrix. <p> Use one or multiple of 0, {@link Matrix4x3d#PROPERTY_IDENTITY}, {@link Matrix4x3d#PROPERTY_TRANSLATION}, {@link Matrix4x3d#PROPERTY_ORTHONORMAL}.
Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position <code>objPos</code> towards a target position at <code>targetPos</code> while constraining a cylindrical rotation around the given <code>up</code> vector. <p> This method can be used to create the complete model transformation for a given object, including the translation of the object to its position <code>objPos</code>.
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position <code>objPos</code> towards a target position at <code>targetPos</code> using a shortest arc rotation by not preserving any <i>up</i> vector of the object. <p> This method can be used to create the complete model transformation for a given object, including the translation of the object to its position <code>objPos</code>. <p> In order to specify an <i>up</i> vector which needs to be maintained when rotating the +Z axis of the object, use {@link #billboardSpherical(Vector3d, Vector3d, Vector3d)}.
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position <code>objPos</code> towards a target position at <code>targetPos</code>. <p> This method can be used to create the complete model transformation for a given object, including the translation of the object to its position <code>objPos</code>. <p> If preserving an <i>up</i> vector is not necessary when rotating the +Z axis, then a shortest arc rotation can be obtained using {@link #billboardSpherical(Vector3d, Vector3d)}.
Compute the cofactor matrix of the left 3x3 submatrix of <code>this</code>. <p> The cofactor matrix can be used instead of {@link #normal()} to transform normals when the orientation of the normals with respect to the surface should be preserved.
Compute the cofactor matrix of the left 3x3 submatrix of <code>this</code> and store it into <code>dest</code>. All other values of <code>dest</code> will be set to {@link #identity() identity}. <p> The cofactor matrix can be used instead of {@link #normal(Matrix4x3d)} to transform normals when the orientation of the normals with respect to the surface should be preserved.
Compute the cofactor matrix of the left 3x3 submatrix of <code>this</code> and store it into <code>dest</code>. <p> The cofactor matrix can be used instead of {@link #normal(Matrix3d)} to transform normals when the orientation of the normals with respect to the surface should be preserved.
Compute and set the matrix properties returned by {@link #properties()} based on the current matrix element values.
Component-wise add <code>this</code> and <code>other</code> by first multiplying each component of <code>other</code> by <code>otherFactor</code> and adding that result to <code>this</code>. <p> The matrix <code>other</code> will not be changed.
Get the current values of <code>this</code> matrix and store them into <code>dest</code>. <p> This is the reverse method of {@link #set(Matrix4x3d)} and allows to obtain intermediate calculation results when chaining multiple transformations.
Reset this matrix to the identity. <p> Please note that if a call to {@link #identity()} is immediately followed by a call to: {@link #translate(double, double, double) translate}, {@link #rotate(double, double, double, double) rotate}, {@link #scale(double, double, double) scale}, {@link #ortho(double, double, double, double, double, double) ortho}, {@link #ortho2D(double, double, double, double) ortho2D}, {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt}, {@link #lookAlong(double, double, double, double, double, double) lookAlong}, or any of their overloads, then the call to {@link #identity()} can be omitted and the subsequent call replaced with: {@link #translation(double, double, double) translation}, {@link #rotation(double, double, double, double) rotation}, {@link #scaling(double, double, double) scaling}, {@link #setOrtho(double, double, double, double, double, double) setOrtho}, {@link #setOrtho2D(double, double, double, double) setOrtho2D}, {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt}, {@link #setLookAlong(double, double, double, double, double, double) setLookAlong}, or any of their overloads.
Invert this matrix.
Invert <code>this</code> orthographic projection matrix. <p> This method can be used to quickly obtain the inverse of an orthographic projection matrix.
Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code> and store the result in <code>this</code>. <p> If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code> then the result is <code>other</code>.
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> This is equivalent to calling {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt()} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(double, double, double, double, double, double) setLookAlong()}
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> This is equivalent to calling {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt()} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(double, double, double, double, double, double) setLookAlong()}
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> This is equivalent to calling {@link #lookAt(Vector3d, Vector3d, Vector3d) lookAt} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(Vector3d, Vector3d) setLookAlong()}.
Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookalong rotation transformation will be applied first! <p> This is equivalent to calling {@link #lookAt(Vector3d, Vector3d, Vector3d) lookAt} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to set the matrix to a lookalong transformation without post-multiplying it, use {@link #setLookAlong(Vector3d, Vector3d) setLookAlong()}.
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()}.
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()}.
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAt(Vector3d, Vector3d, Vector3d)}.
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAt(Vector3d, Vector3d, Vector3d)}.
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()}.
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()}.
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAtLH(Vector3d, Vector3d, Vector3d)}.
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a lookat transformation without post-multiplying it, use {@link #setLookAtLH(Vector3d, Vector3d, Vector3d)}.
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 0 1 0 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 0 -1 0 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 -1 0 0 0 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 0 1 0 0 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 0 -1 0 0 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 1 0 0 0 0 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 1 0 0 0 0 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 1 0 0 0 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 1 0 0 0 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 1 0 0 0 0 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 1 0 0 0 0 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 1 0 0 0 0 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 1 0 0 0 0 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 0 1 0 1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 0 -1 0 1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 0 1 0 0 1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 0 1 0 0 1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 0 1 0 1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 0 -1 0 1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 0 -1 0 0 1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 0 -1 0 0 1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 1 0 0 0 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 0 1 0 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 0 -1 0 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 -1 0 0 0 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 -1 0 0 0 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 0 1 0 0 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 0 -1 0 0 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 -1 0 0 0 0 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 -1 0 0 0 0 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 -1 0 0 0 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 -1 0 0 0 0 1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 -1 0 0 0 0 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 -1 0 0 0 0 0 -1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 -1 0 0 0 0 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 -1 0 0 0 0 -1 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 0 1 0 -1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 1 0 0 0 0 -1 0 -1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 0 1 0 0 -1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 0 1 0 0 -1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 0 1 0 -1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 -1 0 0 0 0 -1 0 -1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 1 0 0 -1 0 0 -1 0 0 0 </pre>
Multiply <code>this</code> by the matrix <pre> 0 0 -1 0 0 -1 0 0 -1 0 0 0 </pre>
Multiply this matrix by the supplied <code>right</code> matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the transformation of the right matrix will be applied first!
Multiply <code>this</code> by the 4x3 matrix with the column vectors <code>(rm00, rm01, rm02)</code>, <code>(rm10, rm11, rm12)</code>, <code>(rm20, rm21, rm22)</code> and <code>(0, 0, 0)</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the specified matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the transformation of the <code>R</code> matrix will be applied first!
Component-wise multiply <code>this</code> by <code>other</code>.
Multiply <code>this</code> orthographic projection matrix by the supplied <code>view</code> matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>V</code> the <code>view</code> matrix, then the new matrix will be <code>M * V</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * V * v</code>, the transformation of the <code>view</code> matrix will be applied first!
Multiply <code>this</code> by the matrix <pre> -1 0 0 0 0 1 0 0 0 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 -1 0 0 0 0 1 0 </pre>
Multiply <code>this</code> by the matrix <pre> 1 0 0 0 0 1 0 0 0 0 -1 0 </pre>
Compute a normal matrix from the left 3x3 submatrix of <code>this</code> and store it into the left 3x3 submatrix of <code>this</code>. All other values of <code>this</code> will be set to {@link #identity() identity}. <p> The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>. <p> Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix. In that case, use {@link #set3x3(Matrix4x3d)} to set a given Matrix4x3d to only the left 3x3 submatrix of this matrix.
Compute a normal matrix from the left 3x3 submatrix of <code>this</code> and store it into the left 3x3 submatrix of <code>dest</code>. All other values of <code>dest</code> will be set to {@link #identity() identity}. <p> The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>. <p> Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix. In that case, use {@link #set3x3(Matrix4x3d)} to set a given Matrix4x3d to only the left 3x3 submatrix of a given matrix.
Normalize the left 3x3 submatrix of this matrix. <p> The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had <i>skewing</i>).
Apply an oblique projection transformation to this matrix with the given values for <code>a</code> and <code>b</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the oblique transformation matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the oblique transformation will be applied first! <p> The oblique transformation is defined as: <pre> x' = x + a*z y' = y + a*z z' = z </pre> or in matrix form: <pre> 1 0 a 0 0 1 b 0 0 0 1 0 </pre>
Apply an oblique projection transformation to this matrix with the given values for <code>a</code> and <code>b</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the oblique transformation matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the oblique transformation will be applied first! <p> The oblique transformation is defined as: <pre> x' = x + a*z y' = y + a*z z' = z </pre> or in matrix form: <pre> 1 0 a 0 0 1 b 0 0 0 1 0 </pre>
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho(double, double, double, double, double, double, bool) setOrtho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho(double, double, double, double, double, double) setOrtho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho(double, double, double, double, double, double, bool) setOrtho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho(double, double, double, double, double, double) setOrtho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, Matrix4x3d) ortho()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho2D(double, double, double, double) setOrtho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double) ortho()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho2D(double, double, double, double) setOrtho2D()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, Matrix4x3d) orthoLH()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho2DLH(double, double, double, double) setOrthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double) orthoLH()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrtho2DLH(double, double, double, double) setOrtho2DLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrthoLH(double, double, double, double, double, double, bool) setOrthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrthoLH(double, double, double, double, double, double, bool) setOrthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to an orthographic projection without post-multiplying it, use {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, bool, Matrix4x3d) ortho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetric(double, double, double, double, bool) setOrthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, Matrix4x3d) ortho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetric(double, double, double, double) setOrthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, bool) ortho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetric(double, double, double, double, bool) setOrthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> This method is equivalent to calling {@link #ortho(double, double, double, double, double, double) ortho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetric(double, double, double, double) setOrthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, bool, Matrix4x3d) orthoLH()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetricLH(double, double, double, double, bool) setOrthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, Matrix4x3d) orthoLH()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetricLH(double, double, double, double) setOrthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, bool) orthoLH()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetricLH(double, double, double, double, bool) setOrthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix. <p> This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double) orthoLH()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first! <p> In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use {@link #setOrthoSymmetricLH(double, double, double, double) setOrthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Apply a picking transformation to this matrix using the given window coordinates <code>(x, y)</code> as the pick center and the given <code>(width, height)</code> as the size of the picking region in window coordinates.
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation <code>x*a + y*b + z*c + d = 0</code>. <p> The vector <code>(a, b, c)</code> must be a unit vector. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first! <p> Reference: <a href="https://msdn.microsoft.com/en-us/library/windows/desktop/bb281733(v=vs.85).aspx">msdn.microsoft.com</a>
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first!
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first!
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane. <p> This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaterniond} is the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>, offset by the given <code>point</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the reflection will be applied first!
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation <code>x*a + y*b + z*c + d = 0</code>. <p> The vector <code>(a, b, c)</code> must be a unit vector. <p> Reference: <a href="https://msdn.microsoft.com/en-us/library/windows/desktop/bb281733(v=vs.85).aspx">msdn.microsoft.com</a>
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane. <p> This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaterniond} is the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>, offset by the given <code>point</code>.
Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Apply a rotation transformation, rotating about the given {@link AxisAngle4d}, to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4d}, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the {@link AxisAngle4d} rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(AxisAngle4d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply a rotation transformation, rotating about the given {@link AxisAngle4d} and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4d}, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the {@link AxisAngle4d} rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(AxisAngle4d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the axis-angle rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(double, Vector3d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply a rotation transformation, rotating the given radians about the specified axis and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis, then the new matrix will be <code>M * A</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * A * v</code>, the axis-angle rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(double, Vector3d)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code> , the rotation will be applied first! <p> In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}.
Apply the rotation transformation of the given {@link Quaterniond} to this matrix while using <code>(ox, oy, oz)</code> as the rotation origin. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> This method is equivalent to calling: <code>translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)</code> <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>Q * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>Q * M * v</code>, the quaternion rotation will be applied last! <p> In order to set the matrix to a rotation transformation without pre-multiplying, use {@link #rotation(Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Pre-multiply the rotation transformation of the given {@link Quaterniond} to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>Q * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>Q * M * v</code>, the quaternion rotation will be applied last! <p> In order to set the matrix to a rotation transformation without pre-multiplying, use {@link #rotation(Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified <code>(x, y, z)</code> axis. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationX(double) rotationX()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationX(double) rotationX()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationY(double) rotationY()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationY(double) rotationY()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationZ(double) rotationY()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in <code>dest</code>. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>R * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the rotation will be applied last! <p> In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use {@link #rotationZ(double) rotationZ()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>(dirX, dirY, dirZ)</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(double, double, double, double, double, double) rotationTowards()}. <p> This method is equivalent to calling: <code>mul(new Matrix4x3d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)</code>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>(dirX, dirY, dirZ)</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(double, double, double, double, double, double) rotationTowards()}. <p> This method is equivalent to calling: <code>mul(new Matrix4x3d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert())</code>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>dir</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(Vector3d, Vector3d) rotationTowards()}. <p> This method is equivalent to calling: <code>mul(new Matrix4x3d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert())</code>
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local <code>+Z</code> axis with <code>dir</code> and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix, then the new matrix will be <code>M * L</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the lookat transformation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying it, use {@link #rotationTowards(Vector3d, Vector3d) rotationTowards()}. <p> This method is equivalent to calling: <code>mul(new Matrix4x3d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert(), dest)</code>
Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this matrix, which is assumed to only contain a translation, and store the result in <code>dest</code>. <p> This method assumes <code>this</code> to only contain a translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>. <p> This method assumes <code>this</code> to only contain a translation. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
Apply rotation about the X axis to this matrix by rotating the given amount of radians. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Apply rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateX(angleX).rotateY(angleY).rotateZ(angleZ)</code>
Apply rotation of <code>angles.x</code> radians about the X axis, followed by a rotation of <code>angles.y</code> radians about the Y axis and followed by a rotation of <code>angles.z</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)</code>
Apply rotation about the Y axis to this matrix by rotating the given amount of radians. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Apply rotation of <code>angles.y</code> radians about the Y axis, followed by a rotation of <code>angles.x</code> radians about the X axis and followed by a rotation of <code>angles.z</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)</code>
Apply rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateY(angleY).rotateX(angleX).rotateZ(angleZ)</code>
Apply rotation about the Z axis to this matrix by rotating the given amount of radians. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Apply rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateZ(angleZ).rotateY(angleY).rotateX(angleX)</code>
Apply rotation of <code>angles.z</code> radians about the Z axis, followed by a rotation of <code>angles.y</code> radians about the Y axis and followed by a rotation of <code>angles.x</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> This method is equivalent to calling: <code>rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)</code>
Set this matrix to a rotation transformation using the given {@link AxisAngle4d}. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation. <p> In order to apply the rotation transformation to an existing transformation, use {@link #rotate(AxisAngle4d) rotate()} instead. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
Set this matrix to the rotation - and possibly scaling - transformation of the given {@link Quaterniond}. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation. <p> In order to apply the rotation transformation to an existing transformation, use {@link #rotate(Quaterniond) rotate()} instead. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Set this matrix to a rotation matrix which rotates the given radians about a given axis. <p> The axis described by the <code>axis</code> vector needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Set this matrix to a rotation matrix which rotates the given radians about a given axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> From <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">Wikipedia</a>
Set this matrix to a transformation composed of a rotation of the specified {@link Quaterniond} while using <code>(ox, oy, oz)</code> as the rotation origin. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)</code> <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local <code>-z</code> axis with <code>(dirX, dirY, dirZ)</code>. <p> In order to apply the rotation transformation to a previous existing transformation, use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}. <p> This method is equivalent to calling: <code>setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert()</code>
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local <code>-z</code> axis with <code>dir</code>. <p> In order to apply the rotation transformation to a previous existing transformation, use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}. <p> This method is equivalent to calling: <code>setLookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert()</code>
Set this matrix to a rotation transformation about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Set this matrix to a rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>rotationX(angleX).rotateY(angleY).rotateZ(angleZ)</code>
Set this matrix to a rotation transformation about the Y axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Set this matrix to a rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>rotationY(angleY).rotateX(angleX).rotateZ(angleZ)</code>
Set this matrix to a rotation transformation about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
Set this matrix to a rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>rotationZ(angleZ).rotateY(angleY).rotateX(angleX)</code>
Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code> , the scaling will be applied first!
Apply scaling to <code>this</code> matrix by scaling the base axes by the given x, y and z factors. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code> , the scaling will be applied first!
Apply scaling to this matrix by scaling the base axes by the given <code>xyz.x</code>, <code>xyz.y</code> and <code>xyz.z</code> factors, respectively. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
Apply scaling to this matrix by scaling all three base axes by the given <code>factor</code> while using <code>(ox, oy, oz)</code> as the scaling origin. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first! <p> This method is equivalent to calling: <code>translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)</code>
Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using <code>(ox, oy, oz)</code> as the scaling origin. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first! <p> This method is equivalent to calling: <code>translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)</code>
Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>S * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the scaling will be applied last!
Apply scaling to this matrix by scaling the X axis by <code>x</code> and the Y axis by <code>y</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
Set this matrix to be a simple scale matrix which scales the base axes by <code>xyz.x</code>, <code>xyz.y</code> and <code>xyz.z</code>, respectively. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling. <p> In order to post-multiply a scaling transformation directly to a matrix use {@link #scale(Vector3d) scale()} instead.
Set this matrix to be a simple scale matrix.
Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling. <p> In order to post-multiply a scaling transformation directly to a matrix, use {@link #scale(double) scale()} instead.
Set this matrix to be equivalent to the rotation specified by the given {@link AxisAngle4d}.
Store the values of the given matrix <code>m</code> into <code>this</code> matrix.
Set the values in the matrix using a float array that contains the matrix elements in column-major order. <p> The results will look like this:<br><br>
Set the values in the matrix using a float array that contains the matrix elements in column-major order. <p> The results will look like this:<br><br>
Set the values in the matrix using a double array that contains the matrix elements in column-major order. <p> The results will look like this:<br><br>
Set the values in the matrix using a double array that contains the matrix elements in column-major order. <p> The results will look like this:<br><br>
Set the values within this matrix to the supplied double values. The matrix will look like this:<br><br>
Store the values of the upper 4x3 submatrix of <code>m</code> into <code>this</code> matrix.
Set the left 3x3 submatrix of this {@link Matrix4x3d} to the given {@link Matrix3d} and the rest to identity.
Set the four columns of this matrix to the supplied vectors, respectively.
Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given {@link Quaterniond}. <p> This method is equivalent to calling: <code>rotation(q)</code>
Set the left 3x3 submatrix of this {@link Matrix4x3d} to the given {@link Matrix3d} and don't change the other elements.
Set the left 3x3 submatrix of this {@link Matrix4x3d} to that of the given {@link Matrix4x3d} and don't change the other elements.
Set the column at the given <code>column</code> index, starting with <code>0</code>.
Set this matrix to a rotation transformation to make <code>-z</code> point along <code>dir</code>. <p> This is equivalent to calling {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to apply the lookalong transformation to any previous existing transformation, use {@link #lookAlong(double, double, double, double, double, double) lookAlong()}
Set this matrix to a rotation transformation to make <code>-z</code> point along <code>dir</code>. <p> This is equivalent to calling {@link #setLookAt(Vector3d, Vector3d, Vector3d) setLookAt()} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>. <p> In order to apply the lookalong transformation to any previous existing transformation, use {@link #lookAlong(Vector3d, Vector3d)}.
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code>. <p> In order to apply the lookat transformation to a previous existing transformation, use {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt}.
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns <code>-z</code> with <code>center - eye</code>. <p> In order to not make use of vectors to specify <code>eye</code>, <code>center</code> and <code>up</code> but use primitives, like in the GLU function, use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()} instead. <p> In order to apply the lookat transformation to a previous existing transformation, use {@link #lookAt(Vector3d, Vector3d, Vector3d) lookAt()}.
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code>. <p> In order to apply the lookat transformation to a previous existing transformation, use {@link #lookAtLH(double, double, double, double, double, double, double, double, double) lookAtLH}.
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns <code>+z</code> with <code>center - eye</code>. <p> In order to not make use of vectors to specify <code>eye</code>, <code>center</code> and <code>up</code> but use primitives, like in the GLU function, use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()} instead. <p> In order to apply the lookat transformation to a previous existing transformation, use {@link #lookAtLH(Vector3d, Vector3d, Vector3d) lookAt()}.
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #ortho(double, double, double, double, double, double) ortho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #ortho(double, double, double, double, double, double, bool) ortho()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system. <p> This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrtho()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #ortho2D(double, double, double, double) ortho2D()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system. <p> This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrthoLH()} with <code>zNear=-1</code> and <code>zFar=+1</code>. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #ortho2DLH(double, double, double, double) ortho2DLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #orthoLH(double, double, double, double, double, double) orthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range. <p> In order to apply the orthographic projection to an already existing transformation, use {@link #orthoLH(double, double, double, double, double, double, bool) orthoLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrtho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> In order to apply the symmetric orthographic projection to an already existing transformation, use {@link #orthoSymmetric(double, double, double, double) orthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range. <p> This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double, bool) setOrtho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> In order to apply the symmetric orthographic projection to an already existing transformation, use {@link #orthoSymmetric(double, double, double, double, bool) orthoSymmetric()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of <code>[-1..+1]</code>. <p> This method is equivalent to calling {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> In order to apply the symmetric orthographic projection to an already existing transformation, use {@link #orthoSymmetricLH(double, double, double, double) orthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range. <p> This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double, bool) setOrtho()} with <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>. <p> In order to apply the symmetric orthographic projection to an already existing transformation, use {@link #orthoSymmetricLH(double, double, double, double, bool) orthoSymmetricLH()}. <p> Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
Set only the left 3x3 submatrix of this matrix to a rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Set only the left 3x3 submatrix of this matrix to a rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and followed by a rotation of <code>angleZ</code> radians about the Z axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Set only the left 3x3 submatrix of this matrix to a rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Set the row at the given <code>row</code> index, starting with <code>0</code>.
Set only the translation components <code>(m30, m31, m32)</code> of this matrix to the given values <code>(xyz.x, xyz.y, xyz.z)</code>. <p> To build a translation matrix instead, use {@link #translation(Vector3d)}. To apply a translation, use {@link #translate(Vector3d)}.
Set only the translation components <code>(m30, m31, m32)</code> of this matrix to the given values <code>(x, y, z)</code>. <p> To build a translation matrix instead, use {@link #translation(double, double, double)}. To apply a translation, use {@link #translate(double, double, double)}.
Set the value of the matrix element at column 0 and row 0.
Set the value of the matrix element at column 0 and row 1.
Set the value of the matrix element at column 0 and row 2.
Set the value of the matrix element at column 1 and row 0.
Set the value of the matrix element at column 1 and row 1.
Set the value of the matrix element at column 1 and row 2.
Set the value of the matrix element at column 2 and row 0.
Set the value of the matrix element at column 2 and row 1.
Set the value of the matrix element at column 2 and row 2.
Set the value of the matrix element at column 3 and row 0.
Set the value of the matrix element at column 3 and row 1.
Set the value of the matrix element at column 3 and row 2.
Apply a projection transformation to this matrix that projects onto the plane with the general plane equation <code>y = 0</code> as if casting a shadow from a given light position/direction <code>(lightX, lightY, lightZ, lightW)</code>. <p> Before the shadow projection is applied, the plane is transformed via the specified <code>planeTransformation</code>. <p> If <code>lightW</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the shadow projection will be applied first!
Apply a projection transformation to this matrix that projects onto the plane with the general plane equation <code>y = 0</code> as if casting a shadow from a given light position/direction <code>light</code>. <p> Before the shadow projection is applied, the plane is transformed via the specified <code>planeTransformation</code>. <p> If <code>light.w</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the shadow projection will be applied first!
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation <code>x*a + y*b + z*c + d = 0</code> as if casting a shadow from a given light position/direction <code>(lightX, lightY, lightZ, lightW)</code>. <p> If <code>lightW</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the shadow projection will be applied first! <p> Reference: <a href="ftp://ftp.sgi.com/opengl/contrib/blythe/advanced99/notes/node192.html">ftp.sgi.com</a>
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation <code>x*a + y*b + z*c + d = 0</code> as if casting a shadow from a given light position/direction <code>light</code>. <p> If <code>light.w</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light. <p> If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix, then the new matrix will be <code>M * S</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the shadow projection will be applied first! <p> Reference: <a href="ftp://ftp.sgi.com/opengl/contrib/blythe/advanced99/notes/node192.html">ftp.sgi.com</a>
Component-wise subtract <code>subtrahend</code> from <code>this</code>.
Exchange the values of <code>this</code> matrix with the given <code>other</code> matrix.
Apply a translation to this matrix by translating by the given number of units in x, y and z. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>M * T</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * T * v</code>, the translation will be applied first! <p> In order to set the matrix to a translation transformation without post-multiplying it, use {@link #translation(double, double, double)}.
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>M * T</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * T * v</code>, the translation will be applied first! <p> In order to set the matrix to a translation transformation without post-multiplying it, use {@link #translation(double, double, double)}.
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>M * T</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * T * v</code>, the translation will be applied first! <p> In order to set the matrix to a translation transformation without post-multiplying it, use {@link #translation(Vector3d)}.
Apply a translation to this matrix by translating by the given number of units in x, y and z. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>M * T</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * T * v</code>, the translation will be applied first! <p> In order to set the matrix to a translation transformation without post-multiplying it, use {@link #translation(Vector3d)}.
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>T * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>T * M * v</code>, the translation will be applied last! <p> In order to set the matrix to a translation transformation without pre-multiplying it, use {@link #translation(double, double, double)}.
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>T * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>T * M * v</code>, the translation will be applied last! <p> In order to set the matrix to a translation transformation without pre-multiplying it, use {@link #translation(double, double, double)}.
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>T * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>T * M * v</code>, the translation will be applied last! <p> In order to set the matrix to a translation transformation without pre-multiplying it, use {@link #translation(Vector3d)}.
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z. <p> If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation matrix, then the new matrix will be <code>T * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>T * M * v</code>, the translation will be applied last! <p> In order to set the matrix to a translation transformation without pre-multiplying it, use {@link #translation(Vector3d)}.
Set this matrix to be a simple translation matrix. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.
Set this matrix to be a simple translation matrix. <p> The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.
Set <code>this</code> matrix to <code>T * R</code>, where <code>T</code> is the given <code>translation</code> and <code>R</code> is a rotation transformation specified by the given quaternion. <p> When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(translation).rotate(quat)</code>
Set <code>this</code> matrix to <code>T * R</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code> and <code>R</code> is a rotation - and possibly scaling - transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>. <p> When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat)</code>
Set <code>this</code> matrix to <code>T * R</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code> and <code>R</code> is a rotation transformation specified by the given quaternion. <p> When transforming a vector by the resulting matrix the rotation transformation will be applied first and then the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat)</code>
Set <code>this</code> matrix to <code>(T * R)<sup>-1</sup></code>, where <code>T</code> is the given <code>translation</code> and <code>R</code> is a rotation transformation specified by the given quaternion. <p> This method is equivalent to calling: <code>translationRotate(...).invert()</code>
Set <code>this</code> matrix to <code>(T * R)<sup>-1</sup></code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code> and <code>R</code> is a rotation transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>. <p> This method is equivalent to calling: <code>translationRotate(...).invert()</code>
Set <code>this</code> matrix to <code>T * R * M</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code>, <code>R</code> is a rotation - and possibly scaling - transformation specified by the quaternion <code>(qx, qy, qz, qw)</code> and <code>M</code> is the given matrix <code>mat</code> <p> When transforming a vector by the resulting matrix the transformation described by <code>M</code> will be applied first, then the scaling, then rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat).mul(mat)</code>
Set <code>this</code> matrix to <code>T * R * S</code>, where <code>T</code> is the given <code>translation</code>, <code>R</code> is a rotation transformation specified by the given quaternion, and <code>S</code> is a scaling transformation which scales the axes by <code>scale</code>. <p> When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(translation).rotate(quat).scale(scale)</code>
Set <code>this</code> matrix to <code>T * R * S</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code>, <code>R</code> is a rotation transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>, and <code>S</code> is a scaling transformation which scales the three axes x, y and z by <code>(sx, sy, sz)</code>. <p> When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)</code>
Set <code>this</code> matrix to <code>T * R * S * M</code>, where <code>T</code> is the given <code>translation</code>, <code>R</code> is a rotation transformation specified by the given quaternion, <code>S</code> is a scaling transformation which scales the axes by <code>scale</code>. <p> When transforming a vector by the resulting matrix the transformation described by <code>M</code> will be applied first, then the scaling, then rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(translation).rotate(quat).scale(scale).mul(m)</code>
Set <code>this</code> matrix to <code>T * R * S * M</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code>, <code>R</code> is a rotation transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>, <code>S</code> is a scaling transformation which scales the three axes x, y and z by <code>(sx, sy, sz)</code>. <p> When transforming a vector by the resulting matrix the transformation described by <code>M</code> will be applied first, then the scaling, then rotation and at last the translation. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mul(m)</code>
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given <code>pos</code> and aligns the local <code>-z</code> axis with <code>dir</code>. <p> This method is equivalent to calling: <code>translation(pos).rotateTowards(dir, up)</code>
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given <code>(posX, posY, posZ)</code> and aligns the local <code>-z</code> axis with <code>(dirX, dirY, dirZ)</code>. <p> This method is equivalent to calling: <code>translation(posX, posY, posZ).rotateTowards(dirX, dirY, dirZ, upX, upY, upZ)</code>
Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.
Set all the values within this matrix to 0.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>x=-1</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>y=-1</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>z=-1</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>x=1</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>y=1</code> when using the identity matrix.
Argument to the first parameter of {@link #frustumPlane(int, Vector4d)} identifying the plane with equation <code>z=1</code> when using the identity matrix.
Bit returned by {@link #properties()} to indicate that the matrix represents the identity transformation.
Bit returned by {@link #properties()} to indicate that the left 3x3 submatrix represents an orthogonal matrix (i.e. orthonormal basis).
Bit returned by {@link #properties()} to indicate that the matrix represents a pure translation transformation.
Contains the definition of an affine 4x3 matrix (4 columns, 3 rows) of doubles, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this: <p> m00 m10 m20 m30<br> m01 m11 m21 m31<br> m02 m12 m22 m32<br>
@author Richard Greenlees @author Kai Burjack