Set this matrix to a model transformation for a right-handed coordinate system,
that aligns the local <code>-z</code> axis with <code>(dirX, dirY, dirZ)</code>.
<p>
In order to apply the rotation transformation to a previous existing transformation,
use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}.
<p>
This method is equivalent to calling: <code>setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert()</code>
@param dirX
the x-coordinate of the direction to rotate towards
@param dirY
the y-coordinate of the direction to rotate towards
@param dirZ
the z-coordinate of the direction to rotate towards
@param upX
the x-coordinate of the up vector
@param upY
the y-coordinate of the up vector
@param upZ
the z-coordinate of the up vector
@return this
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local <code>-z</code> axis with <code>(dirX, dirY, dirZ)</code>. <p> In order to apply the rotation transformation to a previous existing transformation, use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}. <p> This method is equivalent to calling: <code>setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert()</code>
@see #rotateTowards(Vector3d, Vector3d) @see #rotationTowards(double, double, double, double, double, double)
@param dirX the x-coordinate of the direction to rotate towards @param dirY the y-coordinate of the direction to rotate towards @param dirZ the z-coordinate of the direction to rotate towards @param upX the x-coordinate of the up vector @param upY the y-coordinate of the up vector @param upZ the z-coordinate of the up vector @return this