Test whether the given sphere with center <code>(sX, sY, sZ)</code> intersects the triangle given by its three vertices, and if they intersect
store the point of intersection into <code>result</code>.
<p>
This method also returns whether the point of intersection is on one of the triangle's vertices, edges or on the face.
<p>
Reference: Book "Real-Time Collision Detection" chapter 5.2.7 "Testing Sphere Against Triangle"
@param sX
the x coordinate of the sphere's center
@param sY
the y coordinate of the sphere's center
@param sZ
the z coordinate of the sphere's center
@param sR
the sphere's radius
@param v0X
the x coordinate of the first vertex of the triangle
@param v0Y
the y coordinate of the first vertex of the triangle
@param v0Z
the z coordinate of the first vertex of the triangle
@param v1X
the x coordinate of the second vertex of the triangle
@param v1Y
the y coordinate of the second vertex of the triangle
@param v1Z
the z coordinate of the second vertex of the triangle
@param v2X
the x coordinate of the third vertex of the triangle
@param v2Y
the y coordinate of the third vertex of the triangle
@param v2Z
the z coordinate of the third vertex of the triangle
@param result
will hold the point of intersection
@return one of {@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2},
{@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20} or
{@link #POINT_ON_TRIANGLE_FACE} or <code>0</code>
Test whether the given sphere with center <code>(sX, sY, sZ)</code> intersects the triangle given by its three vertices, and if they intersect store the point of intersection into <code>result</code>. <p> This method also returns whether the point of intersection is on one of the triangle's vertices, edges or on the face. <p> Reference: Book "Real-Time Collision Detection" chapter 5.2.7 "Testing Sphere Against Triangle"
@param sX the x coordinate of the sphere's center @param sY the y coordinate of the sphere's center @param sZ the z coordinate of the sphere's center @param sR the sphere's radius @param v0X the x coordinate of the first vertex of the triangle @param v0Y the y coordinate of the first vertex of the triangle @param v0Z the z coordinate of the first vertex of the triangle @param v1X the x coordinate of the second vertex of the triangle @param v1Y the y coordinate of the second vertex of the triangle @param v1Z the z coordinate of the second vertex of the triangle @param v2X the x coordinate of the third vertex of the triangle @param v2Y the y coordinate of the third vertex of the triangle @param v2Z the z coordinate of the third vertex of the triangle @param result will hold the point of intersection @return one of {@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2}, {@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20} or {@link #POINT_ON_TRIANGLE_FACE} or <code>0</code>