Determine the closest point on the triangle with the given vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code>, <code>(v2X, v2Y, v2Z)</code>
between that triangle and the given point <code>(pX, pY, pZ)</code> and store that point into the given <code>result</code>.
<p>
Additionally, this method returns whether the closest point is a vertex ({@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2})
of the triangle, lies on an edge ({@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20})
or on the {@link #POINT_ON_TRIANGLE_FACE face} of the triangle.
<p>
Reference: Book "Real-Time Collision Detection" chapter 5.1.5 "Closest Point on Triangle to Point"
@param v0X
the x coordinate of the first vertex of the triangle
@param v0Y
the y coordinate of the first vertex of the triangle
@param v0Z
the z coordinate of the first vertex of the triangle
@param v1X
the x coordinate of the second vertex of the triangle
@param v1Y
the y coordinate of the second vertex of the triangle
@param v1Z
the z coordinate of the second vertex of the triangle
@param v2X
the x coordinate of the third vertex of the triangle
@param v2Y
the y coordinate of the third vertex of the triangle
@param v2Z
the z coordinate of the third vertex of the triangle
@param pX
the x coordinate of the point
@param pY
the y coordinate of the point
@param pZ
the y coordinate of the point
@param result
will hold the closest point
@return one of {@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2},
{@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20} or
{@link #POINT_ON_TRIANGLE_FACE}
Determine the closest point on the triangle with the given vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code>, <code>(v2X, v2Y, v2Z)</code> between that triangle and the given point <code>(pX, pY, pZ)</code> and store that point into the given <code>result</code>. <p> Additionally, this method returns whether the closest point is a vertex ({@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2}) of the triangle, lies on an edge ({@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20}) or on the {@link #POINT_ON_TRIANGLE_FACE face} of the triangle. <p> Reference: Book "Real-Time Collision Detection" chapter 5.1.5 "Closest Point on Triangle to Point"
@param v0X the x coordinate of the first vertex of the triangle @param v0Y the y coordinate of the first vertex of the triangle @param v0Z the z coordinate of the first vertex of the triangle @param v1X the x coordinate of the second vertex of the triangle @param v1Y the y coordinate of the second vertex of the triangle @param v1Z the z coordinate of the second vertex of the triangle @param v2X the x coordinate of the third vertex of the triangle @param v2Y the y coordinate of the third vertex of the triangle @param v2Z the z coordinate of the third vertex of the triangle @param pX the x coordinate of the point @param pY the y coordinate of the point @param pZ the y coordinate of the point @param result will hold the closest point @return one of {@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2}, {@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20} or {@link #POINT_ON_TRIANGLE_FACE}