Pre-multiply the rotation transformation of the given {@link Quaterniond} to this matrix.
<p>
When used with a right-handed coordinate system, the produced rotation will rotate a vector
counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
When used with a left-handed coordinate system, the rotation is clockwise.
<p>
If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
then the new matrix will be <code>Q * M</code>. So when transforming a
vector <code>v</code> with the new matrix by using <code>Q * M * v</code>,
the quaternion rotation will be applied last!
<p>
In order to set the matrix to a rotation transformation without pre-multiplying,
use {@link #rotation(Quaterniond)}.
<p>
Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
Pre-multiply the rotation transformation of the given {@link Quaterniond} to this matrix. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>Q * M</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>Q * M * v</code>, the quaternion rotation will be applied last! <p> In order to set the matrix to a rotation transformation without pre-multiplying, use {@link #rotation(Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
@see #rotation(Quaterniond)
@param quat the {@link Quaterniond} @return this