Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians
about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>.
<p>
This method assumes <code>this</code> to only contain a translation.
<p>
The axis described by the three components needs to be a unit vector.
<p>
When used with a right-handed coordinate system, the produced rotation will rotate a vector
counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
When used with a left-handed coordinate system, the rotation is clockwise.
<p>
If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
then the new matrix will be <code>M * R</code>. So when transforming a
vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
rotation will be applied first!
<p>
In order to set the matrix to a rotation matrix without post-multiplying the rotation
transformation, use {@link #rotation(double, double, double, double) rotation()}.
<p>
Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
@see #rotation(double, double, double, double)
@param ang
the angle in radians
@param x
the x component of the axis
@param y
the y component of the axis
@param z
the z component of the axis
@param dest
will hold the result
@return dest
Matrix4drotateTranslation(double ang, double x, double y, double z, Matrix4d dest)
Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>. <p> This method assumes <code>this</code> to only contain a translation. <p> The axis described by the three components needs to be a unit vector. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first! <p> In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use {@link #rotation(double, double, double, double) rotation()}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
@see #rotation(double, double, double, double)
@param ang the angle in radians @param x the x component of the axis @param y the y component of the axis @param z the z component of the axis @param dest will hold the result @return dest