Apply rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and
followed by a rotation of <code>angleX</code> radians about the X axis.
<p>
When used with a right-handed coordinate system, the produced rotation will rotate a vector
counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
When used with a left-handed coordinate system, the rotation is clockwise.
<p>
This method assumes that <code>this</code> matrix represents an {@link #isAffine() affine} transformation (i.e. its last row is equal to <code>(0, 0, 0, 1)</code>)
and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).
<p>
If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
then the new matrix will be <code>M * R</code>. So when transforming a
vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
rotation will be applied first!
@param angleZ
the angle to rotate about Z
@param angleY
the angle to rotate about Y
@param angleX
the angle to rotate about X
@return this
Apply rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> This method assumes that <code>this</code> matrix represents an {@link #isAffine() affine} transformation (i.e. its last row is equal to <code>(0, 0, 0, 1)</code>) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination). <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
@param angleZ the angle to rotate about Z @param angleY the angle to rotate about Y @param angleX the angle to rotate about X @return this