Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this {@link #isAffine() affine} matrix and store
the result in <code>dest</code>.
<p>
This method assumes <code>this</code> to be {@link #isAffine() affine}.
<p>
When used with a right-handed coordinate system, the produced rotation will rotate a vector
counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
When used with a left-handed coordinate system, the rotation is clockwise.
<p>
If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
then the new matrix will be <code>M * Q</code>. So when transforming a
vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
the quaternion rotation will be applied first!
<p>
In order to set the matrix to a rotation transformation without post-multiplying,
use {@link #rotation(ref Quaterniond)}.
<p>
Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
@see #rotation(ref Quaterniond)
@param quat
the {@link Quaterniond}
@param dest
will hold the result
@return dest
Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniond} to this {@link #isAffine() affine} matrix and store the result in <code>dest</code>. <p> This method assumes <code>this</code> to be {@link #isAffine() affine}. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> In order to set the matrix to a rotation transformation without post-multiplying, use {@link #rotation(ref Quaterniond)}. <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
@see #rotation(ref Quaterniond)
@param quat the {@link Quaterniond} @param dest will hold the result @return dest