Set <code>this</code> matrix to <code>(T * R)<sup>-1</sup></code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code> and
<code>R</code> is a rotation transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>.
<p>
This method is equivalent to calling: <code>translationRotate(...).invert()</code>
@param tx
the number of units by which to translate the x-component
@param ty
the number of units by which to translate the y-component
@param tz
the number of units by which to translate the z-component
@param qx
the x-coordinate of the vector part of the quaternion
@param qy
the y-coordinate of the vector part of the quaternion
@param qz
the z-coordinate of the vector part of the quaternion
@param qw
the scalar part of the quaternion
@return this
Set <code>this</code> matrix to <code>(T * R)<sup>-1</sup></code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code> and <code>R</code> is a rotation transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>. <p> This method is equivalent to calling: <code>translationRotate(...).invert()</code>
@see #translationRotate(double, double, double, double, double, double, double) @see #invert()
@param tx the number of units by which to translate the x-component @param ty the number of units by which to translate the y-component @param tz the number of units by which to translate the z-component @param qx the x-coordinate of the vector part of the quaternion @param qy the y-coordinate of the vector part of the quaternion @param qz the z-coordinate of the vector part of the quaternion @param qw the scalar part of the quaternion @return this