Apply a rotation transformation to this matrix by rotating the given amount of radians about
the specified rotation center <code>(x, y)</code> and store the result in <code>dest</code>.
<p>
This method is equivalent to calling: <code>translate(x, y, dest).rotate(ang).translate(-x, -y)</code>
<p>
If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
then the new matrix will be <code>M * R</code>. So when transforming a
vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
@param ang
the angle in radians
@param x
the x component of the rotation center
@param y
the y component of the rotation center
@param dest
will hold the result
@return dest
Apply a rotation transformation to this matrix by rotating the given amount of radians about the specified rotation center <code>(x, y)</code> and store the result in <code>dest</code>. <p> This method is equivalent to calling: <code>translate(x, y, dest).rotate(ang).translate(-x, -y)</code> <p> If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix, then the new matrix will be <code>M * R</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
@see #translate(double, double, Matrix3x2d) @see #rotate(double, Matrix3x2d)
@param ang the angle in radians @param x the x component of the rotation center @param y the y component of the rotation center @param dest will hold the result @return dest