Integrate the rotation given by the angular velocity <code>(vx, vy, vz)</code> around the x, y and z axis, respectively,
with respect to the given elapsed time delta <code>dt</code> and add the differentiate rotation to the rotation represented by this quaternion.
<p>
This method pre-multiplies the rotation given by <code>dt</code> and <code>(vx, vy, vz)</code> by <code>this</code>, so
the angular velocities are always relative to the local coordinate system of the rotation represented by <code>this</code> quaternion.
<p>
This method is equivalent to calling: <code>rotateLocal(dt * vx, dt * vy, dt * vz)</code>
<p>
Reference: <a href="http://physicsforgames.blogspot.de/2010/02/quaternions.html">http://physicsforgames.blogspot.de/</a>
@param dt
the delta time
@param vx
the angular velocity around the x axis
@param vy
the angular velocity around the y axis
@param vz
the angular velocity around the z axis
@return this
Integrate the rotation given by the angular velocity <code>(vx, vy, vz)</code> around the x, y and z axis, respectively, with respect to the given elapsed time delta <code>dt</code> and add the differentiate rotation to the rotation represented by this quaternion. <p> This method pre-multiplies the rotation given by <code>dt</code> and <code>(vx, vy, vz)</code> by <code>this</code>, so the angular velocities are always relative to the local coordinate system of the rotation represented by <code>this</code> quaternion. <p> This method is equivalent to calling: <code>rotateLocal(dt * vx, dt * vy, dt * vz)</code> <p> Reference: <a href="http://physicsforgames.blogspot.de/2010/02/quaternions.html">http://physicsforgames.blogspot.de/</a>
@param dt the delta time @param vx the angular velocity around the x axis @param vy the angular velocity around the y axis @param vz the angular velocity around the z axis @return this