Quaterniond.integrate

Integrate the rotation given by the angular velocity <code>(vx, vy, vz)</code> around the x, y and z axis, respectively, with respect to the given elapsed time delta <code>dt</code> and add the differentiate rotation to the rotation represented by this quaternion. <p> This method pre-multiplies the rotation given by <code>dt</code> and <code>(vx, vy, vz)</code> by <code>this</code>, so the angular velocities are always relative to the local coordinate system of the rotation represented by <code>this</code> quaternion. <p> This method is equivalent to calling: <code>rotateLocal(dt * vx, dt * vy, dt * vz)</code> <p> Reference: <a href="http://physicsforgames.blogspot.de/2010/02/quaternions.html">http://physicsforgames.blogspot.de/</a>

@param dt the delta time @param vx the angular velocity around the x axis @param vy the angular velocity around the y axis @param vz the angular velocity around the z axis @return this

  1. Quaterniond integrate(double dt, double vx, double vy, double vz)
    struct Quaterniond
    ref return
    integrate
    (
    double dt
    ,
    double vx
    ,
    double vy
    ,
    double vz
    )
  2. Quaterniond integrate(double dt, double vx, double vy, double vz, Quaterniond dest)

Meta