Apply the rotation transformation of the given {@link Quaterniond} to this matrix while using <code>(ox, oy, oz)</code> as the rotation origin.
<p>
When used with a right-handed coordinate system, the produced rotation will rotate a vector
counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
When used with a left-handed coordinate system, the rotation is clockwise.
<p>
If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
then the new matrix will be <code>M * Q</code>. So when transforming a
vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
the quaternion rotation will be applied first!
<p>
This method is equivalent to calling: <code>translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)</code>
<p>
Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
@param quat
the {@link Quaterniond}
@param ox
the x coordinate of the rotation origin
@param oy
the y coordinate of the rotation origin
@param oz
the z coordinate of the rotation origin
@return this
Matrix4x3drotateAround(Quaterniond quat, double ox, double oy, double oz)
Apply the rotation transformation of the given {@link Quaterniond} to this matrix while using <code>(ox, oy, oz)</code> as the rotation origin. <p> When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise. <p> If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion, then the new matrix will be <code>M * Q</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * Q * v</code>, the quaternion rotation will be applied first! <p> This method is equivalent to calling: <code>translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)</code> <p> Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
@param quat the {@link Quaterniond} @param ox the x coordinate of the rotation origin @param oy the y coordinate of the rotation origin @param oz the z coordinate of the rotation origin @return this