Apply a "view" transformation to this matrix that maps the given <code>(left, bottom)</code> and
<code>(right, top)</code> corners to <code>(-1, -1)</code> and <code>(1, 1)</code> respectively and store the result in <code>dest</code>.
<p>
If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
then the new matrix will be <code>M * O</code>. So when transforming a
vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
orthographic projection transformation will be applied first!
@see #setView(double, double, double, double)
@param left
the distance from the center to the left view edge
@param right
the distance from the center to the right view edge
@param bottom
the distance from the center to the bottom view edge
@param top
the distance from the center to the top view edge
@param dest
will hold the result
@return dest
Apply a "view" transformation to this matrix that maps the given <code>(left, bottom)</code> and <code>(right, top)</code> corners to <code>(-1, -1)</code> and <code>(1, 1)</code> respectively and store the result in <code>dest</code>. <p> If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix, then the new matrix will be <code>M * O</code>. So when transforming a vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the orthographic projection transformation will be applied first!
@see #setView(double, double, double, double)
@param left the distance from the center to the left view edge @param right the distance from the center to the right view edge @param bottom the distance from the center to the bottom view edge @param top the distance from the center to the top view edge @param dest will hold the result @return dest