Compute the first-order derivative of a linear two-dimensional function <i>f</i> with respect to X and store the result in <code>dest</code>. <p> This method computes the constant rate of change for <i>f</i> given the three values of <i>f</i> at the specified three inputs <code>(v0X, v0Y)</code>, <code>(v1X, v1Y)</code> and <code>(v2X, v2Y)</code>.
Compute the first-order derivative of a linear two-dimensional function <i>f</i> with respect to Y and store the result in <code>dest</code>. <p> This method computes the constant rate of change for <i>f</i> given the three values of <i>f</i> at the specified three inputs <code>(v0X, v0Y)</code>, <code>(v1X, v1Y)</code> and <code>(v2X, v2Y)</code>.
Bilinearly interpolate the single scalar value <i>f</i> over the given triangle. <p> Reference: <a href="https://en.wikipedia.org/wiki/Barycentric_coordinate_system">https://en.wikipedia.org/</a>
Bilinearly interpolate the two-dimensional vector <i>f</i> over the given triangle and store the result in <code>dest</code>. <p> Reference: <a href="https://en.wikipedia.org/wiki/Barycentric_coordinate_system">https://en.wikipedia.org/</a>
Bilinearly interpolate the three-dimensional vector <i>f</i> over the given triangle and store the result in <code>dest</code>. <p> Reference: <a href="https://en.wikipedia.org/wiki/Barycentric_coordinate_system">https://en.wikipedia.org/</a>
Compute the interpolation factors <code>(t0, t1, t2)</code> in order to interpolate an arbitrary value over a given triangle at the given point <code>(x, y)</code>. <p> This method takes in the 2D vertex positions of the three vertices of a triangle and stores in <code>dest</code> the factors <code>(t0, t1, t2)</code> in the equation <code>v' = v0 * t0 + v1 * t1 + v2 * t2</code> where <code>(v0, v1, v2)</code> are arbitrary (scalar or vector) values associated with the respective vertices of the triangle. The computed value <code>v'</code> is the interpolated value at the given position <code>(x, y)</code>.